334Accesses
6Citations
Abstract
We classify all the cyclic self-dual codes of length\(p^k\) over the finite chain ring\(\mathcal R:=\mathbb Z_p[u]/\langle u^3 \rangle \), which is not a Galois ring, wherep is a prime number andk is a positive integer. First, we find all the dual codes of cyclic codes over\({\mathcal R}\) of length\(p^k\) for every primep. We then prove that if a cyclic code over\({\mathcal R}\) of length\(p^k\) is self-dual, thenp should be equal to 2. Furthermore, we completely determine the generators of all the cyclic self-dual codes over\(\mathbb Z_2[u]/\langle u^3 \rangle \) of length\(2^k\). Finally, we obtain a mass formula for counting cyclic self-dual codes over\(\mathbb Z_2[u]/\langle u^3 \rangle \) of length\(2^k\).
This is a preview of subscription content,log in via an institution to check access.
Access this article
Subscribe and save
- Get 10 units per month
- Download Article/Chapter or eBook
- 1 Unit = 1 Article or 1 Chapter
- Cancel anytime
Buy Now
Price includes VAT (Japan)
Instant access to the full article PDF.
We’re sorry, something doesn't seem to be working properly.
Please try refreshing the page. If that doesn't work, please contact support so we can address the problem.
Explore related subjects
Discover the latest articles and news from researchers in related subjects, suggested using machine learning.References
Abualrub T., Oehmke R.B.: On the generator of\(\mathbb{Z}_{4}\) cyclic codes of length\(2^{e}\). IEEE Trans. Inf. Theory49, 2126–2133 (2003).
Abualrub T., Siap I.: Cyclic codes over the rings\(\mathbb{Z}_2+u\mathbb{Z}_2\) and\(\mathbb{Z}_2+u\mathbb{Z}_2+u^2\mathbb{Z}_2\). Des. Codes Cryptogr.42, 273–287 (2007).
Al-Ashker M., Hamoudeh M.: Cyclic codes over\(\mathbb{Z}_2+u\mathbb{Z}_2+u^2\mathbb{Z}_2+\cdots +u^{k-1}\mathbb{Z}_2\). Turk. J. Math.35, 737–7494 (2011).
Bonnecaze A., Udaya P.: Cyclic codes and self-dual codes over\(\mathbb{F}_2+u\mathbb{F}_2\). IEEE Trans. Inf. Theory45, 1250–1255 (1999).
Cao Y., Fu F.-W.: Cyclic codes over\(\mathbb{F}_{2^m}[u]/\langle u^k \rangle \) of oddly even length. Appl. Algebra Eng. Commun. Comput.27, 259–277 (2016).
Cao Y., Li Q.: Cyclic codes of odd length over\({\mathbb{Z}}_4[u]/\langle u^k \rangle \). Cryptogr. Commun.9, 599–624 (2017).
Dinh H.Q.: Constacyclic codes of length\(p^s\) over\(\mathbb{F}_{p^m}+u\mathbb{F}_{p^m}\). J. Algebra5, 940–950 (2010).
Dinh H.Q., Dohmpongsa S., Sriboonchitta S.: Repeated-root constacyclic codes of prime power length over\(\frac{{\mathbb{F}}_{p^m}[u]}{\langle u^a \rangle }\) and their duals. Discrete Math.339, 1706–1715 (2016).
Dinh H.Q., Fan Y., Liu H., Liu X., Sriboonchitta S.: On self-dual constacyclic codes of length\(p^s\) over\({\mathbb{F}}_{p^m}+u{\mathbb{F}}_{p^m}\). Discrete Math.341, 324–335 (2018).
Dinh H.Q., López-Permouth S.R.: Cyclic and negacyclic codes over finite chain rings. IEEE Trans. Inf. Theory50, 1728–1744 (2004).
Dinh H.Q., Singh A.K., Kumar P., Sriboonchitta S.: On the structure of cyclic codes over the ring\({\mathbb{Z}}_{2^s}[u]/\langle u^k \rangle \). Discrete Math.341, 2243–2275 (2018).
Dinh H.Q., Wang L., Zhu S.: Negacyclic codes of length\(2p^s\) over\({\mathbb{F}}_{p^m}+u{\mathbb{F}}_{p^m}\). Finite Fields Appl.31, 178–201 (2015).
Dougherty S.T., Karadeniz S., Yildiz B.: Cyclic codes over\(R_k\). Des. Codes Cryptogr.63, 113–126 (2012).
Greferath M., Schmidt S.E.: Gray isometries for finite chain rings and a nonlinear ternary\((36, 3^{12}, 15)\) code. IEEE Trans. Inf. Theory45, 2522–2524 (1999).
Hammons Jr. A.R., Kummar P.V., Calderbank A.R., Sloane N.J.A., Sole P.: The\({\mathbb{Z}}_4\) -linearity of Kerdock, Preparata, Goethals, and related codes. IEEE Trans. Inf. Theory40, 301–319 (1994).
Kiah H.M., Leung K.H., Ling S.: Cyclic codes over\(GR(p^2, m)\) of length\(p^k\). Finite Fields Appl.14, 834–846 (2008).
Kiah H.M., Leung K.H., Ling S.: A note on cyclic codes over\(GR(p^2, m)\) of length\(p^k\). Des. Codes Cryptogr.63, 105–112 (2012).
Kim B., Lee Y.: Construction of extremal self-dual codes over\({\mathbb{Z}}_8\) and\({\mathbb{Z}}_{16}\). Des. Codes Cryptogr.81, 239–257 (2016).
Kim B., Lee Y.: Lee weights of cyclic self-dual codes over Galois rings of characteristic\(p^2\). Finite Fields Appl.45, 107–130 (2017).
Kim B., Lee Y.: A mass formula for cyclic codes over Galois rings of characteristic\(p^3\). Finite Fields Appl.52, 214–242 (2018).
Kim B., Lee Y., Doo J.: Classification of cyclic codes over a non-Galois chain ring\({\mathbb{Z}}_p[u]/\langle u^3 \rangle \). Finite Fields Appl.59, 208–237 (2019).
Singh A.K., Kewat P.K.: On cyclic codes over the ring\(\mathbb{Z}_p[u]/\langle u^k \rangle \). Des. Codes Cryptogr.74, 1–13 (2015).
Sobhani R.: Complete classification of\((\delta +\alpha u^2)\) -constacyclic codes of length\(p^k\) over\(\mathbb{F}_{p^m}+u\mathbb{F}_{p^m}+u^2\mathbb{F}_{p^m}\). Finite Fields Appl.34, 123–138 (2015).
Sobhani R., Esmaeili M.: A note on cyclic codes over\(GR(p^2, m)\) of length\(p^k\). Finite Fields Appl.15, 387–391 (2009).
Wolfmann J.: Binary images of cyclic codes over\({\mathbb{Z}}_4\). IEEE Trans. Inf. Theory47, 1773–1779 (2001).
Acknowledgements
We express our gratitude to the reviewers for their very helpful comments, which lead to improvement of the exposition of this paper.
Author information
Authors and Affiliations
Department of Mathematics, Sungkyunkwan University, Seobu-ro, Suwon, 16419, Republic of Korea
Boran Kim
Department of Mathematics, Ewha Womans University, Seoul, 03760, Republic of Korea
Yoonjin Lee
- Boran Kim
Search author on:PubMed Google Scholar
- Yoonjin Lee
Search author on:PubMed Google Scholar
Corresponding author
Correspondence toYoonjin Lee.
Additional information
Communicated by J.-L. Kim.
Publisher's Note
Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.
The first author was supported by Basic Science Research Program through the National Research Foundation of Korea (NRF) funded by the Ministry of Education (NRF-2019R1I1A1A01060467) and also by the National Research Foundation of Korea (NRF) grant funded by the Korea government (MSIT) (NRF-2016R1A5A1008055). Yoonjin Lee is supported by Basic Science Research Program through the National Research Foundation of Korea (NRF) funded by the Ministry of Education (Grant No. 2019R1A6A1A11051177) and also by the National Research Foundation of Korea (NRF) grant funded by the Korea government (MEST) (NRF-2017R1A2B2004574)
Rights and permissions
About this article
Cite this article
Kim, B., Lee, Y. Classification of self-dual cyclic codes over the chain ring\(\mathbb Z_p[u]/\langle u^3 \rangle \).Des. Codes Cryptogr.88, 2247–2273 (2020). https://doi.org/10.1007/s10623-020-00776-1
Received:
Revised:
Accepted:
Published:
Issue Date:
Share this article
Anyone you share the following link with will be able to read this content:
Sorry, a shareable link is not currently available for this article.
Provided by the Springer Nature SharedIt content-sharing initiative