Movatterモバイル変換


[0]ホーム

URL:


Skip to main content
Springer Nature Link
Log in

On circulant involutory MDS matrices

  • Published:
Designs, Codes and Cryptography Aims and scope Submit manuscript

Abstract

We give a new algebraic proof of the non-existence of circulant involutory MDS matrices with coefficients in fields of characteristic 2. In odd characteristics we give parameters for the potential existence. If we relax circulancy to\(\theta \)-circulancy, then there is no restriction to the existence of\(\theta \)-circulant involutory MDS matrices even for fields of characteristic 2. Finally, we relax further the involutory definition and propose a new direct construction of almost involutory\(\theta \)-circulant MDS matrices. We show that they can be interesting in hardware implementations.

This is a preview of subscription content,log in via an institution to check access.

Access this article

Log in via an institution

Subscribe and save

Springer+ Basic
¥17,985 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price includes VAT (Japan)

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Augot D., Finiasz M.: Direct construction of recursive MDS diffusion layers using shortened BCH codes. In: Progress in Cryptology. FSE 2014, vol. 8540, pp. 3–17 (2014).

  2. Aidinyan A.K.: On matrices with nondegenerate square submatrices. Probl. Inf. Transm.22, 106–108 (1986).

    MathSciNet  Google Scholar 

  3. Berger T.P.: Construction of recursive MDS diffusion layers from Gabidulin codes. In: Progress in Cryptology-INDOCRYPT 2013. LNCS, vol. 8250, pp. 274–285. Springer, Berlin (2013).

  4. Cauchois V., Loidreau P., Merkiche N.: Direct construction of quasi-involutory recursive-like mds matrices from\(2\)-cyclic codes. IACR Trans. Symmetric Cryptol.2016(2), 80–98 (2016).

    Google Scholar 

  5. Daemen J., Rijmen V.: The Design of Rijndael—AES—The Advanced Encryption Standard. Springer, Berlin (2002).

    MATH  Google Scholar 

  6. Gabidulin E.M.: Theory of codes with maximal rank distance. In: Problems of Information Transmission (1985).

  7. Guo J., Peyrin T., Poschmann A.: The PHOTON family of lightweight hash functions. In: Advances in Cryptology. CRYPTO 2011 (2011).

  8. Guo J., Peyrin T., Poschmann A., Robshaw M.J.B.: The LED block cipher. In CHES 2011, pp. 326–341 (2011).

  9. Gupta K.C., Ray I.G.: On constructions of circulant MDS matrices for lightweight cryptography. ISPEC2014, 564–576 (2014).

    Google Scholar 

  10. Liu M., Sim S.M.: Lightweight MDS generalized circulant matrices. In: Fast Software Encryption—23rd International Conference, FSE 2016, Bochum, Germany, March 20–23, 2016, Revised Selected Papers, pp. 101–120 (2016).

  11. Li Y., Wang M.: On the construction of lightweight circulant involutory MDS matrices. In: Fast Software Encryption—23rd International Conference, FSE 2016, Bochum, Germany, March 20–23, 2016, Revised Selected Papers, pp. 121–139 (2016).

  12. Roth R.M., Lempel A.: On MDS codes via Cauchy matrices. IEEE Trans. Inf. Theory35, 1314–1319 (1989).

    Article MathSciNet MATH  Google Scholar 

  13. Roth R.M., Seroussi G.: On generator matrices of MDS codes. IEEE Trans. Inf. TheoryIT–31, 826–830 (1985).

    Article MathSciNet MATH  Google Scholar 

  14. Sim S.M., Khoo K., Oggier F., Peyrin T.: Lightweight MDS involution matrices. In: FSE 2015 (2015).

Download references

Author information

Authors and Affiliations

  1. DGA MI, BP 7, 35998, Rennes Cedex 9, France

    Victor Cauchois & Pierre Loidreau

  2. Univ Rennes, CNRS, IRMAR - UMR 6625, 35000, Rennes, France

    Victor Cauchois & Pierre Loidreau

Authors
  1. Victor Cauchois

    You can also search for this author inPubMed Google Scholar

  2. Pierre Loidreau

    You can also search for this author inPubMed Google Scholar

Corresponding author

Correspondence toPierre Loidreau.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

This is one of several papers published inDesigns, Codes and Cryptography comprising the “Special Issue on Coding and Cryptography”.

Rights and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Cauchois, V., Loidreau, P. On circulant involutory MDS matrices.Des. Codes Cryptogr.87, 249–260 (2019). https://doi.org/10.1007/s10623-018-0520-3

Download citation

Keywords

Mathematics Subject Classification

Associated Content

Part of a collection:

Special Issue: Coding and Cryptography

Access this article

Subscribe and save

Springer+ Basic
¥17,985 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price includes VAT (Japan)

Instant access to the full article PDF.

Advertisement


[8]ページ先頭

©2009-2025 Movatter.jp