Movatterモバイル変換


[0]ホーム

URL:


Skip to main content
Springer Nature Link
Log in

Generalized Hermitian codes

  • Published:
Designs, Codes and Cryptography Aims and scope Submit manuscript

Abstract

We investigate one-point algebraic geometry codes defined from curves related to the Hermitian curve. We obtain codes attaining new records on the parameters.

This is a preview of subscription content,log in via an institution to check access.

Access this article

Log in via an institution

Subscribe and save

Springer+ Basic
¥17,985 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price includes VAT (Japan)

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Barbero A.I., Munuera C.: The weight hierarchy of Hermitian codes. SIAM J. Discret. Math.13, 79–104 (2000)

    Article MathSciNet MATH  Google Scholar 

  2. Bosma W., Cannon J., Playoust C.: The Magma algebra system I: the user language. J. Symb. Comput.24, 235–265 (1997)

    Article MathSciNet MATH  Google Scholar 

  3. Bulygin S.V.: Generalized Hermitian codes overGF(2r). IEEE Trans. Inf. Theory52, 4664–4669 (2006)

    Article MathSciNet  Google Scholar 

  4. Deolalikar V.: Determining irreducibility and ramification groups for an additive extension of the rational function fields. J. Number Theory97, 269–286 (2002)

    Article MathSciNet MATH  Google Scholar 

  5. Garcia A., Stichtenoth H.: A class of polynomials over finite fields. Finite Fields Appl.5, 424–435 (1999)

    Article MathSciNet MATH  Google Scholar 

  6. Geil O., Munuera C., Ruano D., Torres F.: On the order bound for one-point codes. Adv. Math. Commun.5, 489–504 (2011)

    Article MathSciNet MATH  Google Scholar 

  7. Høholdt T., van Lint J.H., Pellikaan R.: Algebraic-geometry codes. In: Huffman W.C., Pless V. (eds.) Handbook of Coding Theory, pp. 871–961. Amsterdam, North-Holland (1998).

  8. Kirfel C., Pellikaan R.: The minimum distance of codes in an array coming from telescopic semigroups. IEEE Trans. Inf. Theory41, 1720–1732 (1995)

    Article MathSciNet MATH  Google Scholar 

  9. Kummar P.V., Yang K.: On the true minimum distance of Hermitian codes. In: Stichtenoth H., Tsfasman M.F. (eds.) Coding Theory and Algebraic Geometry, pp. 99–107. Springer, Heidelberg (1992).

  10. Min, Online database for optimal parameters of (t,m,s)-nets, (t,s)-sequences, orthogonal arrays, and linear codes. Online available athttp://mint.sbg.ac.at. Accessed 29 Feb 2012.

  11. Munuera C.: On the generalized hamming weights of geometric Goppa codes. IEEE Trans. Inf. Theory40, 2092–2099 (1994)

    Article MathSciNet MATH  Google Scholar 

  12. Munuera C., Sepúlveda A., Torres F.: Algebraic geometry codes from castle curves. In: Barbero A. (ed.) Coding Theory and Applications, pp. 117–127. Springer, Heidelberg (2008).

  13. Stichtenoth H.: Algebraic function fields and codes, Universitext. Springer, Berlin (1993)

    Google Scholar 

Download references

Author information

Authors and Affiliations

  1. Department of Applied Mathematics, University of Valladolid, Avda Salamanca SN, 47012, Valladolid, Castilla, Spain

    C. Munuera

  2. Faculdade De Matemática, Universidade Federal De Uberlândia, Av. J. N. De Ávila 2160, Uberlândia, MG, 38408-100, Brazil

    A. Sepúlveda

  3. Institute of Mathematics, Statistics and Computer Science, University of Campinas, P.O. Box 6065, Campinas, SP, 13083-970, Brazil

    F. Torres

Authors
  1. C. Munuera

    You can also search for this author inPubMed Google Scholar

  2. A. Sepúlveda

    You can also search for this author inPubMed Google Scholar

  3. F. Torres

    You can also search for this author inPubMed Google Scholar

Corresponding author

Correspondence toA. Sepúlveda.

Additional information

Communicated by G. Korchmaros.

Rights and permissions

About this article

Cite this article

Munuera, C., Sepúlveda, A. & Torres, F. Generalized Hermitian codes.Des. Codes Cryptogr.69, 123–130 (2013). https://doi.org/10.1007/s10623-012-9627-0

Download citation

Keywords

Mathematics Subject Classification (2010)

Access this article

Subscribe and save

Springer+ Basic
¥17,985 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price includes VAT (Japan)

Instant access to the full article PDF.

Advertisement


[8]ページ先頭

©2009-2025 Movatter.jp