485Accesses
Abstract
We investigate one-point algebraic geometry codes defined from curves related to the Hermitian curve. We obtain codes attaining new records on the parameters.
This is a preview of subscription content,log in via an institution to check access.
Access this article
Subscribe and save
- Get 10 units per month
- Download Article/Chapter or eBook
- 1 Unit = 1 Article or 1 Chapter
- Cancel anytime
Buy Now
Price includes VAT (Japan)
Instant access to the full article PDF.
Similar content being viewed by others
References
Barbero A.I., Munuera C.: The weight hierarchy of Hermitian codes. SIAM J. Discret. Math.13, 79–104 (2000)
Bosma W., Cannon J., Playoust C.: The Magma algebra system I: the user language. J. Symb. Comput.24, 235–265 (1997)
Bulygin S.V.: Generalized Hermitian codes overGF(2r). IEEE Trans. Inf. Theory52, 4664–4669 (2006)
Deolalikar V.: Determining irreducibility and ramification groups for an additive extension of the rational function fields. J. Number Theory97, 269–286 (2002)
Garcia A., Stichtenoth H.: A class of polynomials over finite fields. Finite Fields Appl.5, 424–435 (1999)
Geil O., Munuera C., Ruano D., Torres F.: On the order bound for one-point codes. Adv. Math. Commun.5, 489–504 (2011)
Høholdt T., van Lint J.H., Pellikaan R.: Algebraic-geometry codes. In: Huffman W.C., Pless V. (eds.) Handbook of Coding Theory, pp. 871–961. Amsterdam, North-Holland (1998).
Kirfel C., Pellikaan R.: The minimum distance of codes in an array coming from telescopic semigroups. IEEE Trans. Inf. Theory41, 1720–1732 (1995)
Kummar P.V., Yang K.: On the true minimum distance of Hermitian codes. In: Stichtenoth H., Tsfasman M.F. (eds.) Coding Theory and Algebraic Geometry, pp. 99–107. Springer, Heidelberg (1992).
Min, Online database for optimal parameters of (t,m,s)-nets, (t,s)-sequences, orthogonal arrays, and linear codes. Online available athttp://mint.sbg.ac.at. Accessed 29 Feb 2012.
Munuera C.: On the generalized hamming weights of geometric Goppa codes. IEEE Trans. Inf. Theory40, 2092–2099 (1994)
Munuera C., Sepúlveda A., Torres F.: Algebraic geometry codes from castle curves. In: Barbero A. (ed.) Coding Theory and Applications, pp. 117–127. Springer, Heidelberg (2008).
Stichtenoth H.: Algebraic function fields and codes, Universitext. Springer, Berlin (1993)
Author information
Authors and Affiliations
Department of Applied Mathematics, University of Valladolid, Avda Salamanca SN, 47012, Valladolid, Castilla, Spain
C. Munuera
Faculdade De Matemática, Universidade Federal De Uberlândia, Av. J. N. De Ávila 2160, Uberlândia, MG, 38408-100, Brazil
A. Sepúlveda
Institute of Mathematics, Statistics and Computer Science, University of Campinas, P.O. Box 6065, Campinas, SP, 13083-970, Brazil
F. Torres
- C. Munuera
You can also search for this author inPubMed Google Scholar
- A. Sepúlveda
You can also search for this author inPubMed Google Scholar
- F. Torres
You can also search for this author inPubMed Google Scholar
Corresponding author
Correspondence toA. Sepúlveda.
Additional information
Communicated by G. Korchmaros.
Rights and permissions
About this article
Cite this article
Munuera, C., Sepúlveda, A. & Torres, F. Generalized Hermitian codes.Des. Codes Cryptogr.69, 123–130 (2013). https://doi.org/10.1007/s10623-012-9627-0
Received:
Revised:
Accepted:
Published:
Issue Date:
Share this article
Anyone you share the following link with will be able to read this content:
Sorry, a shareable link is not currently available for this article.
Provided by the Springer Nature SharedIt content-sharing initiative