Movatterモバイル変換


[0]ホーム

URL:


Skip to main content
Springer Nature Link
Log in

\({{{\mathbb Z}_2}{{\mathbb Z}_4}}\) -linear codes: generator matrices and duality

  • Published:
Designs, Codes and Cryptography Aims and scope Submit manuscript

Abstract

A code\({{\mathcal C}}\) is\({{{\mathbb Z}_2}{{\mathbb Z}_4}}\) -additive if the set of coordinates can be partitioned into two subsetsX andY such that the punctured code of\({{\mathcal C}}\) by deleting the coordinates outsideX (respectively,Y) is a binary linear code (respectively, a quaternary linear code). In this paper\({{{\mathbb Z}_2}{{\mathbb Z}_4}}\) -additive codes are studied. Their corresponding binary images, via the Gray map, are\({{{\mathbb Z}_2}{{\mathbb Z}_4}}\) -linear codes, which seem to be a very distinguished class of binary group codes. As for binary and quaternary linear codes, for these codes the fundamental parameters are found and standard forms for generator and parity-check matrices are given. In order to do this, the appropriate concept of duality for\({{{\mathbb Z}_2}{{\mathbb Z}_4}}\) -additive codes is defined and the parameters of their dual codes are computed.

This is a preview of subscription content,log in via an institution to check access.

Access this article

Log in via an institution

Subscribe and save

Springer+ Basic
¥17,985 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price includes VAT (Japan)

Instant access to the full article PDF.

Similar content being viewed by others

ArticleOpen access11 August 2016

References

  • Bierbrauer J.: Introduction to Coding Theory. Chapman & Hall/CRC, Boca Raton, FL (2005)

    MATH  Google Scholar 

  • Borges J., Fernández C., Phelps K.T.: Quaternary Reed–Muller codes. IEEE Trans. Inform. Theory51(7), 2686–2691 (2005)

    Article MathSciNet  Google Scholar 

  • Borges J., Fernández-Córdoba C., Phelps K.T.: ZRM codes. IEEE Trans. Inform. Theory54(1), 380–386 (2008)

    Article MathSciNet  Google Scholar 

  • Borges J., Fernández C., Pujol J., Rifà J., Villanueva M.: On\({{{\mathbb Z}_2}{{\mathbb Z}_4}}\) -linear codes and duality. VJMDA, pp. 171–177, Ciencias, 23. Secr. Publ. Intercamb. Ed., Valladolid (2006).

  • Borges J., Fernández-Córdoba C., Pujol J., Rifà J., Villanueva M.:\({{{\mathbb Z}_2}{{\mathbb Z}_4}}\) -Additive Codes. AMagma Package. Autonomous University of Barcelona (UAB), Bellaterra, Barcelona (2007).http://www.ccg.uab.cat. Accessed July 2009.

  • Borges J., Fernández C., Rifà J.: Every\({{\mathbb Z}_{2k}}\) -code is a binary propelinear code. In: COMB’01. Electronic Notes in Discrete Mathematics, vol. 10, pp. 100–102. Elsevier Science, Amsterdam, November (2001).

  • Borges J., Phelps K.T., Rifà J.: The rank and kernel of extended 1-perfect\({{\mathbb Z}_4}\) -linear and additive non-\({{\mathbb Z}_4}\) -linear codes. IEEE Trans. Inform. Theory49(8), 2028–2034 (2003)

    Article MathSciNet  Google Scholar 

  • Borges J., Rifà J.: A characterization of 1-perfect additive codes. IEEE Trans. Inform. Theory45(5), 1688–1697 (1999)

    Article MATH MathSciNet  Google Scholar 

  • Bosma W., Cannon J., Playoust C.: The MAGMA algebra system I: the user language. J. Symb. Comput.24(3–4), 235–265 (1997)

    Article MATH MathSciNet  Google Scholar 

  • Delsarte P.: An algebraic approach to the association schemes of coding theory. Philips Research Rep. Suppl.10, vi + 97 (1973).

    Google Scholar 

  • Delsarte P., Levenshtein V.: Association schemes and coding theory. IEEE Trans. Inform. Theory44(6), 2477–2504 (1998)

    Article MATH MathSciNet  Google Scholar 

  • Hammons A.R., Kumar P.V., Calderbank A.R., Sloane N.J.A., Solé P.: The\({{\mathbb Z}_4}\) -linearity of kerdock, preparata, goethals and related codes. IEEE Trans. Inform. Theory40, 301–319 (1994)

    Article MATH MathSciNet  Google Scholar 

  • Heden O.: A new construction of group and nongroup perfect codes. Inform. Control34, 314–323 (1977)

    Article MATH MathSciNet  Google Scholar 

  • Huffman W.C., Pless V.: Fundamentals of Error-Correcting Codes. Cambridge University Press, Cambridge (2003)

    MATH  Google Scholar 

  • Krotov D.S.:\({{\mathbb Z}_4}\) -linear Hadamard and extended perfect codes. Electron. Notes Discrete Math.6, 107–112 (2001)

    Article MathSciNet  Google Scholar 

  • Ledermann W.: Introduction to Group Characters. Cambridge University Press, Cambridge (1977)

    MATH  Google Scholar 

  • Lindström B.: Group partitions and mixed perfect codes. Can. Math. Bull.18, 57–60 (1975)

    MATH  Google Scholar 

  • MacWilliams F.J., Sloane N.J.A.: The Theory of Error-Correcting Codes. North-Holland Publishing Company, Amsterdam, New York, Oxford (1977)

    MATH  Google Scholar 

  • Phelps K.T., Rifà J., Villanueva M.: On the additive (\({{\mathbb Z}_4}\) -linear and non-\({{\mathbb Z}_4}\) -linear) Hadamard codes: Rank and Kernel. IEEE Trans. Inform. Theory52(1), 316–319 (2006)

    Article MathSciNet  Google Scholar 

  • Pujol J., Rifà J.: Translation invariant propelinear codes. IEEE Trans. Inform. Theory43, 590–598 (1997)

    Article MATH MathSciNet  Google Scholar 

  • Pujol J., Rifà J., Solov’eva F.: Construction of\({{\mathbb Z}_4}\) -linear Reed–Muller codes. IEEE Trans. Inform. Theory55(1), 99–104 (2009)

    Article  Google Scholar 

  • Rifà J., Basart J.M., Huguet L.: On completely regular propelinear codes. In: Proceedings of 6th International Conference, AAECC-6. LNCS, vol. 357, pp. 341–355. Springer, Berlin (1989).

  • Rifa J., Phelps K.T.: On binary 1-perfect additive codes: some structural properties. IEEE Trans. Inform. Theory48(9), 2587–2592 (2002)

    Article MATH MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

  1. Department of Information and Communications Engineering, Universitat Autònoma de Barcelona, 08193, Bellaterra, Spain

    J. Borges, C. Fernández-Córdoba, J. Pujol, J. Rifà & M. Villanueva

Authors
  1. J. Borges

    You can also search for this author inPubMed Google Scholar

  2. C. Fernández-Córdoba

    You can also search for this author inPubMed Google Scholar

  3. J. Pujol

    You can also search for this author inPubMed Google Scholar

  4. J. Rifà

    You can also search for this author inPubMed Google Scholar

  5. M. Villanueva

    You can also search for this author inPubMed Google Scholar

Corresponding author

Correspondence toJ. Borges.

Additional information

Communicated by T. Helleseth.

Rights and permissions

About this article

Cite this article

Borges, J., Fernández-Córdoba, C., Pujol, J.et al.\({{{\mathbb Z}_2}{{\mathbb Z}_4}}\) -linear codes: generator matrices and duality.Des. Codes Cryptogr.54, 167–179 (2010). https://doi.org/10.1007/s10623-009-9316-9

Download citation

Keywords

Mathematics Subject Classification (2000)

Access this article

Subscribe and save

Springer+ Basic
¥17,985 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price includes VAT (Japan)

Instant access to the full article PDF.

Advertisement


[8]ページ先頭

©2009-2025 Movatter.jp