Movatterモバイル変換


[0]ホーム

URL:


Skip to main content
Springer Nature Link
Log in

On handling indicator constraints in mixed integer programming

  • Published:
Computational Optimization and Applications Aims and scope Submit manuscript

Abstract

Mixed integer programming (MIP) is commonly used to model indicator constraints, i.e., constraints that either hold or are relaxed depending on the value of a binary variable. Unfortunately, those models tend to lead to weak continuous relaxations and turn out to be unsolvable in practice; this is what happens, for e.g., in the case of Classification problems with Ramp Loss functions that represent an important application in this context. In this paper we show the computational evidence that a relevant class of these Classification instances can be solved far more efficiently if a nonlinear, nonconvex reformulation of the indicator constraints is used instead of the linear one. Inspired by this empirical and surprising observation, we show that aggressive bound tightening is the crucial ingredient for solving this class of instances, and we devise a pair of computationally effective algorithmic approaches that exploit it within MIP. One of these methods is currently part of the arsenal ofIBM-Cplex  since version 12.6.1. More generally, we argue that aggressive bound tightening is often overlooked in MIP, while it represents a significant building block for enhancing MIP technology when indicator constraints and disjunctive terms are present.

This is a preview of subscription content,log in via an institution to check access.

Access this article

Log in via an institution

Subscribe and save

Springer+ Basic
¥17,985 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price includes VAT (Japan)

Instant access to the full article PDF.

Similar content being viewed by others

Notes

  1. Percentage gaps are computed with respect to the optimal solution value, which is, instead, reported in Table2.

  2. Because the results of the commercial MIP solvers are reasonably aligned,IBM-Cplex being, according to Table1, better thanFICO Xpress andGurobi, we concentrate in the rest of the paper onIBM-Cplex and we assume the improvements of Sect.6 apply toFICO Xpress andGurobi as well.

References

  1. Andersen, E., Andersen, K.: Presolving in linear programming. Math. Program.71, 221–245 (1995)

    MathSciNet MATH  Google Scholar 

  2. Balas, E.: Disjunctive programming. Ann. Discret. Math.5, 3–51 (1979)

    Article MathSciNet MATH  Google Scholar 

  3. Belotti, P., Lee, J., Liberti, L., Margot, F., Wächter, A.: Branching and bounds tightening techniques for non-convex MINLP. Optim. Methods Softw.24(4–5), 597–634 (2009)

    Article MathSciNet MATH  Google Scholar 

  4. Bonami, P., Biegler, L.T., Conn, A.R., Cornuéjols, G., Grossmann, I.E., Laird, C.D., Lee, J., Lodi, A., Margot, F., Sawaya, N., Wächter, A.: An algorithmic framework for convex mixed integer nonlinear programs. Discret. Optim.5, 186–2004 (2008)

    Article MathSciNet MATH  Google Scholar 

  5. Bonami, P., Kilinc, M., Linderoth, J.: Algorithms and software for convex mixed integer nonlinear programs. In: Lee, J., Leyffer, S. (eds.) Hot Topics in Mixed Integer Nonlinear Programming, IMA Volumes, pp. 1–40. Springer, Berlin (2012)

    Chapter  Google Scholar 

  6. Bonami, P., Lodi, A., Tramontani, A., Wiese, S.: On mathematical programming with indicator constraints. Math. Program.151, 191–223 (2015)

    Article MathSciNet MATH  Google Scholar 

  7. Bonmin, v. 1.7.4.https://projects.coin-or.org/Bonmin

  8. Brooks, J.P.: Support vector machines with the ramp loss and the hard margin loss. Oper. Res.59(2), 467–479 (2011)

    Article MathSciNet MATH  Google Scholar 

  9. Carrizosa, E., Romero Morales, D.: Supervised classification and mathematical optimization. Comput. Oper. Res.40, 150–165 (2013)

    Article MathSciNet  Google Scholar 

  10. Cbc, v. 2.9.https://projects.coin-or.org/Cbc

  11. Ceria, S., Soares, J.: Convex programming for disjunctive convex optimization. Math. Program.86, 595–614 (1999)

    Article MathSciNet MATH  Google Scholar 

  12. Collobert, R., Sinz, F., Weston, J., Bottou, L.: Trading convexity for scalability. In: Proceedings of the 23rd International Conference on Machine Learning, pp. 201–208 (2006)

  13. Couenne, v. branch/CouenneClassifier, r1046.https://projects.coin-or.org/Couenne

  14. Cristianini, N., Shawe-Taylor, J.: An Introduction to Support Vector Machines and Other Kernel-Based Learning Methods. Cambridge University Press, Cambridge (2000)

    Book MATH  Google Scholar 

  15. Davis, E.: Constraint propagation with interval labels. Artif. Intell.32(3), 281–331 (1987)

    Article MathSciNet MATH  Google Scholar 

  16. Duran, M.A., Grossmann, I.: An outer-approximation algorithm for a class of mixed-integer nonlinear programs. Math. Program.36, 307–339 (1986)

    Article MathSciNet MATH  Google Scholar 

  17. FICO Xpress Optimization Suite, v. 7.8.http://www.fico.com/xpress

  18. Fischetti, M., Monaci, M.: Exploiting erraticism in search. Oper. Res.62, 114–122 (2014)

    Article MathSciNet MATH  Google Scholar 

  19. Grossmann, I.E., Trespalacios, F.: Systematic modeling of discrete-continuous optimization models through generalized disjunctive programming. AIChE J.59(9), 3276–3295 (2013)

    Article  Google Scholar 

  20. Gurobi, v. 6.0.2.http://www.gurobi.com

  21. IBM-Cplex, v. 12.6.1.http://www.ibm.com/software/products/en/ibmilogcpleoptistud

  22. Ipopt, v. 3.9.2.http://projects.coin-or.org/Ipopt

  23. Koch, T., Achterberg, T., Andersen, E., Bastert, O., Berthold, T., Bixby, R.E., Danna, E., Gamrath, G., Gleixner, A.M., Heinz, S., Lodi, A., Mittelmann, H., Ralphs, T., Salvagnin, D., Steffy, D.E., Wolter, K.: Miplib 2010. Math. Program. Comput.3, 103–163 (2011)

    Article MathSciNet  Google Scholar 

  24. Lodi, A., Tramontani, A.: Performance variability in mixed-integer programming. In: Topaloglu, H. (ed.) TutORials in Operations Research: Theory Driven by Influential Applications, pp. 1–12. INFORMS, Catonsville (2013)

    Google Scholar 

  25. McCormick, G.P.: Computability of global solutions to factorable nonconvex programs: part I—convex underestimating problems. Math. Program.10, 147–175 (1976)

    Article MathSciNet MATH  Google Scholar 

  26. Messine, F.: Deterministic global optimization using interval constraint propagation techniques. RAIRO-RO38(4), 277–294 (2004)

    Article MathSciNet MATH  Google Scholar 

  27. Quesada, I., Grossmann, I.E.: An LP/NLP based branch-and-bound algorithm for convex MINLP optimization problems. Comput. Chem. Eng.16, 937–947 (1992)

    Article  Google Scholar 

  28. Savelsbergh, M.W.P.: Preprocessing and probing techniques for mixed integer programming problems. ORSA J. Comput.6, 445–454 (1994)

    Article MathSciNet MATH  Google Scholar 

  29. Shen, X., Tseng, G.C., Zhang, X., Wong, W.H.: On\(\psi \)-learning. J. Am. Stat. Assoc.98, 724–734 (2003)

    Article MathSciNet MATH  Google Scholar 

  30. Tawarmalani, M., Sahinidis, N.V.: Convexification and Global Optimization in Continuous and Mixed-Integer Nonlinear Programming: Theory, Algorithms, Software, and Applications. Kluwer Academic Publishers, Boston (2002)

    Book MATH  Google Scholar 

  31. Wu, X., Kumar, V., Ross Quinlan, J., Ghosh, J., Yang, Q., Motoda, H., McLachlan, G.J., Ng, A., Liu, B., Yu, P.S., Zhou, Z.-H., Steinbach, M., Hand, D.J., Steinberg, D.: Top 10 algorithms in data mining. Knowl. Inf. Syst.14, 1–37 (2007)

    Article  Google Scholar 

Download references

Acknowledgments

The research of Fischetti, Monaci and Salvagnin was supported by the University of Padova (Progetto di Ateneo “Exploiting randomness in Mixed Integer Linear Programming”). The research of Fischetti, Lodi, Monaci and Salvagnin was supported by MiUR, Italy (PRIN Project “Mixed-Integer Nonlinear Optimization: Approaches and Applications”). The work of Nogales-Gómez was supported by an STSM Grant from COST Action TD1207. The authors are grateful to Andrea Tramontani and Sven Wiese for many interesting discussions on the subject and to two anonymous referees for a careful reading and many useful comments that helped improving the paper.

Author information

Authors and Affiliations

  1. FICO, Birmingham, UK

    Pietro Belotti

  2. IBM, Madrid, Spain

    Pierre Bonami

  3. University of Padova, Padua, Italy

    Matteo Fischetti & Domenico Salvagnin

  4. University of Bologna, Bologna, Italy

    Andrea Lodi & Michele Monaci

  5. École Polytechnique de Montréal, Montreal, Canada

    Andrea Lodi

  6. Mathematical and Algorithmic Sciences Lab, Huawei France R&D, Paris, France

    Amaya Nogales-Gómez

  7. IBM, Milano, Italy

    Domenico Salvagnin

Authors
  1. Pietro Belotti

    You can also search for this author inPubMed Google Scholar

  2. Pierre Bonami

    You can also search for this author inPubMed Google Scholar

  3. Matteo Fischetti

    You can also search for this author inPubMed Google Scholar

  4. Andrea Lodi

    You can also search for this author inPubMed Google Scholar

  5. Michele Monaci

    You can also search for this author inPubMed Google Scholar

  6. Amaya Nogales-Gómez

    You can also search for this author inPubMed Google Scholar

  7. Domenico Salvagnin

    You can also search for this author inPubMed Google Scholar

Corresponding author

Correspondence toAndrea Lodi.

Rights and permissions

About this article

Access this article

Subscribe and save

Springer+ Basic
¥17,985 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price includes VAT (Japan)

Instant access to the full article PDF.

Advertisement


[8]ページ先頭

©2009-2025 Movatter.jp