Most real-world database applications manage temporal data, i.e., data with associated time references that capture a temporal aspect of the data, typically either when the data is valid or when the data is known. Such applications abound in, e.g., the financial, medical, and scientific domains. In contrast to this, current database management systems offer preciously little built-in query language support for temporal data management. This situation persists although an active temporal database research community has demonstrated that application development can be simplified substantially by built-in temporal support. This paper's contribution is motivated by the observation that existing temporal data models and query languages generally make the same rigid assumption about the semantics of the association of data and time, namely that if a subset of the time domain is associated with some data then this implies the association of any further subset with the data. This paper offers a comprehensive, general framework where alternative semantics may co-exist. It supports so-called malleable and atomic temporal associations, in addition to the conventional ones mentioned above, which are termed constant. To demonstrate the utility of the framework, the paper defines a characteristics-enabled temporal algebra, termed CETA, which defines the traditional relational operators in the new framework. This contribution demonstrates that it is possible to provide built-in temporal support while making less rigid assumptions about the data and without jeopardizing the degree of the support. This moves temporal support closer to practical applications.
This is a preview of subscription content,log in via an institution to check access.
Access this article
Subscribe and save
- Get 10 units per month
- Download Article/Chapter or eBook
- 1 Unit = 1 Article or 1 Chapter
- Cancel anytime
Buy Now
Price includes VAT (Japan)
Instant access to the full article PDF.
Similar content being viewed by others
Explore related subjects
Discover the latest articles, news and stories from top researchers in related subjects.References
T. Abraham and J.F. Roddick, Survey of spatio-temporal databases, Geoinformatica 3(1) (March 1999) 61–99.
M.O. Akinde and M.H. Böhlen, The efficient computation of subqueries in complex OLAP queries, in:Proceedings of the 19th International Conference on Data Engineering, Bangalore, India (March 2003) pp. 163–174.
M.O. Akinde, M.H. Böhlen, T. Johnson, L.V.S. Lakshmanan and D. Srivastava, Efficient OLAP query processing in distributed data warehouses, in:Proceedings of the Eighth Conference on Extending Database Technology, Prague, Czech Republic, (March 2002) pp. 336–353.
J.F. Allen, Maintaining knowledge about temporal intervals, Communications of the ACM 16(11) (November 1983) 832–843.
J.F. Allen, Towards a general theory of action and time, Artificial Intelligence 23(2) (July 1984) 123–154.
I. Androutsopoulos,Exploring Time, Tense and Aspect in Natural Language Database Interfaces (Benjamins, 2002).
J. Ben–Zvi,The Time Relational Model, PhD thesis, Computer Science Department, UCLA, 1982.
M. Böhlen, J. Chomicki, R. Snodgrass and D. Toman, Querying TSQL2 databases with temporal logic, in:Proceedings of the Fifth International Conference on Extending Database Technology, Avignon, France (March 1996) pp. 325–341.
M.H. Böhlen and C.S. Jensen, Temporal data model and query language concepts, in:Encyclopedia of Information Systems, Vol. 4 (Academic, 2003) pp. 437–453.
M.H. Böhlen, C.S. Jensen and R.T. Snodgrass, Temporal statement modifiers, ACM Transactions on Database Systems 25(4) (December 2000) 407–456.
M.H. Böhlen, R.T. Snodgrass and M.D. Soo, Coalescing in temporal databases, in:Proceedings of the 22nd International Conference on Very Large Data Bases, Mumbai (Bombay), India (September 1996) pp. 180–191.
I.T. Bowman and D. Toman, Optimizing temporal queries: Efficient handling of duplicates, Data and Knowledge Engineering 44(2) (February 2003) 143–164.
M.H. Böhlen, R. Busatto and C.S. Jensen, Point- versus interval-based temporal data models, in:Proceedings of the 14th International Conference on Data Engineering, Orlando, Florida (February 1998) pp. 192–200.
E. Camossi, E. Bertino, M. Mesiti and G. Guerrini, Handling expiration of multigranular temporal objects, Journal of Logic and Computation 14(1) (February 2004) 23–50.
J. Chomicki, D. Toman and M.H. Böhlen, Querying ATSQL databases with temporal logic, ACM Transactions on Database Systems 26(2) (June 2001) 145–178.
Y. Cui, J. Widom and J.L. Wiener, Tracing the lineage of view data in a warehousing environment, ACM Transactions on Database Systems 25(2) (June 2000) 179–227.
Y. Cui and J. Widom, Lineage tracing for general data warehouse transformations, in:Proceedings of the 27th International Conference on Very Large Databases, Rome, Italy (September 2001) pp. 471–480.
O. Etzion, S. Jajodia and S. Sripada, eds.,Temporal Databases: Research and Practice, Lecture Notes in Computer Science, Vol. 1399 (Springer, 1998).
D. Gabbay and P. McBrien, Temporal logic & historical databases, in:Proceedings of the 17th International Conference on Very Large Databases, Barcelona, Catalonia, Spain (September 1991) pp. 423–430.
S.K. Gadia, Weak temporal relations, in:Proceedings of the Fifth ACM Symposium on Principles of Database Systems, Cambridge, Massachusetts, USA (March 1986) pp. 70–77.
S.K. Gadia, A homogeneous relational model and query languages for temporal databases, ACM Transactions on Database Systems 13(4) (December 1988) 418–448.
C.S. Jensen and C.E. Dyreson, A consensus glossary of temporal database concepts – February 1998 Version, in: [O. Etzion et al., 1998] (1998) pp. 367–405.
C.S. Jensen, M.D. Soo and R.T. Snodgrass, Unifying temporal models via a conceptual model, Information Systems 19(7) (1994) 513–547.
R. Kowalski and M. Sergot, A logic-based calculus of events, New Generation Computing 4(1) (1986) 67–95.
J. McCarthy and P.J. Hayes, Some philosophical problems from the standpoint of artificial intelligence, Machine Intelligence 4 (1969) 463–502.
L.E. McKenzie and R.T. Snodgrass, Evaluation of relational algebras incorporating the time dimension in databases, ACM Computing Surveys 23(4) (December 1991) 501–543.
R. Nelken,Questions, Time, and Natural Language Interfaces to Temporal Databases, PhD thesis, The Technion – Israel Institute of Technology, 2001.
R.T. Snodgrass,Developing Time-Oriented Database Applications in SQL, (Morgan Kaufmann, San Francisco, California, 2000).
A. Tansel, J. Clifford, S. Gadia, S. Jajodia, A. Segev and R. Snodgrass, eds.,Temporal Databases: Theory, Design, and Implementation (Benjamin/Cummings, Redwood City, California, 1993).
A.U. Tansel, Temporal relational data model, IEEE Transactions on Knowledge and Data Engineering 9(3) (May/June 1997) 464–479.
P. Terenziani and R.T. Snodgrass, Reconciling point-based and interval-based semantics in temporal relational databases: A treatment of the telic/atelic distinction, IEEE Transactions on Knowledge and Data Engineering 16(5) (May 2004) 540–551.
D. Toman, Point-based vs interval-based temporal query languages, in:Proceedings of the 15th ACM Symposium on Principles of Database Systems, Montreal, Canada (June 1996) pp. 58–67.
A. Tuzhilin and J. Clifford, A temporal relational algebra as a basis for temporal relational completeness, in:Proceedings of the 16th International Conference on Very Large Databases, Brisbane, QLD, Australia (August 1990) pp. 13–23.
Y. Wu, S. Jajodia and X.S. Wang, Temporal database bibliography update, in: [O. Etzion et al., 1998] (1998) pp. 338–366.
Author information
Authors and Affiliations
Faculty of Computer Science, Free University of Bozen-Bolzano, Dominikanerplatz 3, 39100, Bolzano, Italy
Michael Böhlen & Johann Gamper
Aalborg University, Aalborg, Denmark
Christian S. Jensen
- Michael Böhlen
You can also search for this author inPubMed Google Scholar
- Johann Gamper
You can also search for this author inPubMed Google Scholar
- Christian S. Jensen
You can also search for this author inPubMed Google Scholar
Corresponding author
Correspondence toMichael Böhlen.
Rights and permissions
About this article
Cite this article
Böhlen, M., Gamper, J. & Jensen, C.S. An algebraic framework for temporal attribute characteristics.Ann Math Artif Intell46, 349–374 (2006). https://doi.org/10.1007/s10472-006-9022-5
Received:
Revised:
Accepted:
Published:
Issue Date:
Share this article
Anyone you share the following link with will be able to read this content:
Sorry, a shareable link is not currently available for this article.
Provided by the Springer Nature SharedIt content-sharing initiative
Keywords
- temporal databases
- temporal algebra
- attribute characteristics
- malleable attributes
- temporal data semantics