Movatterモバイル変換


[0]ホーム

URL:


Skip to main content
Springer Nature Link
Log in

Bending of bilayers with general initial shapes

  • Published:
Advances in Computational Mathematics Aims and scope Submit manuscript

Abstract

We present a simple discrete formula for the elastic energy of a bilayer. The formula is convenient for rapidly computing equilibrium configurations of actuated bilayers of general initial shapes. We use maps of principal curvatures and minimum-curvature direction fields to analyze configurations. We find good agreement between the computations and an approximate analytical solution for the case of a rectangular bilayer. For more general shapes (simple polyiamonds), we find a range of typical bending behaviors: overall bending directions along longest and shortest dimensions, inward bending at corners, curvature intensification near boundaries, and conical bending and partitioned bending zones in some cases.

This is a preview of subscription content,log in via an institution to check access.

Access this article

Log in via an institution

Subscribe and save

Springer+ Basic
¥17,985 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price includes VAT (Japan)

Instant access to the full article PDF.

Similar content being viewed by others

ArticleOpen access17 August 2017

References

  1. Timoshenko, S. et al.: Analysis of bi-metal thermostats. J. Opt. Soc. Am.11(3), 233–255 (1925)

    Article  Google Scholar 

  2. Smela, E., Inganäs, O., Pei, Q., Lundström, I.: Electrochemical muscles: Micromachining fingers and corkscrews. Adv. Mater.5(9), 630–632 (1993)

    Article  Google Scholar 

  3. Smela, E., Inganas, O., Lundstrom, I.: Controlled folding of micrometer-size structures. Science268(5218), 1735–1738 (1995)

    Article  Google Scholar 

  4. Leong, T.G., Benson, B.R., Call, E.K., Gracias, D.H.: Thin film stress driven self-folding of microstructured containers. Small4(10), 1605–1609 (2008)

    Article  Google Scholar 

  5. Smela, E.: Conjugated polymer actuators for biomedical applications. Adv. Mater.15(6), 481–494 (2003)

    Article  Google Scholar 

  6. Guerre, R., Drechsler, U., Bhattacharyya, D., Rantakari, P., Stutz, R., Wright, R.V., Milosavljevic, Z.D., Vaha-Heikkila, T., Kirby, P.B., Despont, M.: Wafer-level transfer technologies for pzt-based rf mems switches. Microelectromech. Syst. J.19(3), 548–560 (2010)

    Article  Google Scholar 

  7. Seung, H.S., Nelson, D.R.: Defects in flexible membranes with crystalline order. Phys. Rev. A38(2), 1005–1018 (1988)

    Article  Google Scholar 

  8. Alben, S., Brenner, M.P.: Self-assembly of flat sheets into closed surfaces. Biophys. Rev. E75(5), 056113 (2007)

    Google Scholar 

  9. Katifori, E., Alben, S., Cerda, E., Nelson, D R, Dumais, J.: Foldable structures and the natural design of pollen grains. Proc. Natl. Acad. Sci. USA107(17), 7635 (2010)

    Article  Google Scholar 

  10. Landau, E D, Lifshitz, E M: Theory of Elasticity. Pergamon Press (1986)

  11. Christophersen, M., Shapiro, B., Smela, E.: Characterization and modeling of ppy bilayer microactuators: part 1. curvature. Sensors Actuators B Chem.115(2), 596–609 (2006)

    Article  Google Scholar 

  12. Alben, S., Balakrisnan, B., Smela, E.: Edge effects determine the direction of bilayer bending. Nano Lett.11, 2280–2285 (2011)

    Article  Google Scholar 

  13. Struik, D.J.: Lectures on Classical Differential Geometry. Dover Publ. (1988)

  14. Weisstein, E.W.: CRC Concise Encyclopedia of Mathematics (1999)

Download references

Author information

Authors and Affiliations

  1. Department of Mathematics, University of Michigan, Ann Arbor, MI, 48109, USA

    Silas Alben

Authors
  1. Silas Alben

    You can also search for this author inPubMed Google Scholar

Corresponding author

Correspondence toSilas Alben.

Additional information

Communicated by: Anette Hosoi

Rights and permissions

About this article

Cite this article

Alben, S. Bending of bilayers with general initial shapes.Adv Comput Math41, 1–22 (2015). https://doi.org/10.1007/s10444-014-9347-2

Download citation

Keywords

Mathematics Subject Classification (2010)

Access this article

Subscribe and save

Springer+ Basic
¥17,985 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price includes VAT (Japan)

Instant access to the full article PDF.

Advertisement


[8]ページ先頭

©2009-2025 Movatter.jp