Movatterモバイル変換


[0]ホーム

URL:


Skip to main content
Springer Nature Link
Log in

The subdifferential of measurable composite max integrands and smoothing approximation

  • Full Length Paper
  • Series B
  • Published:
Mathematical Programming Submit manuscript

Abstract

The subdifferential calculus for the expectation of nonsmooth random integrands involves many fundamental and challenging problems in stochastic optimization. It is known that for Clarke regular integrands, the Clarke subdifferential of the expectation equals the expectation of their Clarke subdifferential. In particular, this holds for convex integrands. However, little is known about the calculation of Clarke subgradients for the expectation of non-regular integrands. The focus of this contribution is to approximate Clarke subgradients for the expectation of random integrands by smoothing methods applied to the integrand. A framework for how to proceed along this path is developed and then applied to a class ofmeasurable composite max integrands. This class contains non-regular integrands from stochastic complementarity problems as well as stochastic optimization problems arising in statistical learning.

This is a preview of subscription content,log in via an institution to check access.

Access this article

Log in via an institution

Subscribe and save

Springer+ Basic
¥17,985 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price includes VAT (Japan)

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Ahn, M., Pang, J.S., Xin, J.: Difference-of-convex learning I: directional stationarity, optimality, and sparsity. SIAM J. Optim.27, 1637–1665 (2017)

    Article MathSciNet  Google Scholar 

  2. Aumann, R.J.: Integrals of set-valued functions. J. Math. Anal. Appl.12, 1–12 (1965)

    Article MathSciNet  Google Scholar 

  3. Blundell, R., Powell, J.L.: Censored regression quantiles with endogenous regression. J. Econom.141, 65–83 (2007)

    Article  Google Scholar 

  4. Burke, J.V.: Second order necessary and sufficient conditions for convex composite NDO. Math. Program.38, 287–302 (1987)

    Article MathSciNet  Google Scholar 

  5. Burke, J.V., Hoheisel, T.: Epi-convergent smoothing with applications to convex composite functions. SIAM J. Optim.23, 1457–1479 (2013)

    Article MathSciNet  Google Scholar 

  6. Burke, J.V., Hoheisel, T., Kanzow, C.: Gradient consistency for integral-convolution smoothing functions. Set-Valued Var. Anal.21, 359–376 (2013)

    Article MathSciNet  Google Scholar 

  7. Burke, J.V., Luke, D.R.: Variational analysis applied to the problem of optimal phase retieval. SIAM J. Control Optim.42, 576–595 (2003)

    Article MathSciNet  Google Scholar 

  8. Chen, C., Mangasarian, O.L.: A class of smoothing functions for nonlinear and mixed complementarity problems. Comput. Optim. Appl.5, 97–138 (1996)

    Article MathSciNet  Google Scholar 

  9. Chen, X.: Smoothing methods for nonsmooth, nonconvex minimization. Math. Program.134, 71–99 (2012)

    Article MathSciNet  Google Scholar 

  10. Chen, X., Fukushima, M.: A smoothing method for a mathematical program with P-matrix linear complementarity constraints. Comput. Optim. Appl.27, 223–246 (2004)

    Article MathSciNet  Google Scholar 

  11. Chen, X., Fukushima, M.: Expected residual minimization method for stochastic linear complementarity problems. Math. Oper. Res.30, 1022–1038 (2005)

    Article MathSciNet  Google Scholar 

  12. Chen, X., Qi, L., Sun, D.: Global and superlinear convergence of the smoothing Newton method and its application to general box constrained variational inequalities. Math. Comput.67, 519–540 (1998)

    Article MathSciNet  Google Scholar 

  13. Chen, X., Wets, R., Zhang, Y.: Stochastic variational inequalities: residual minimization smoothing sample average approximations. SIAM J. Optim.22, 649–673 (2012)

    Article MathSciNet  Google Scholar 

  14. Clarke, F.H.: Optimization and Nonsmooth Analysis, Volume 5 of Classics in Applied Mathematics. SIAM, Philadelphia (1990)

    Book  Google Scholar 

  15. Clarke, F.H., Ledyaev, Y.S., Stern, R.J., Wolenski, P.R.: Nonsmooth Analysis and Control Theory. Springer, New York (1998)

    MATH  Google Scholar 

  16. Dunford, N., Schwartz, J.T.: Linear Operators, Part1: General Theory. Wiley, Hoboken (1988)

    Google Scholar 

  17. Folland, G.B.: Real Analysis, 2nd edn. Wiley, New York (1999)

    MATH  Google Scholar 

  18. Hildenbrand, W.: Core and Equilibria of a Large Economy. Princeton University Press, Princeton (1974)

    MATH  Google Scholar 

  19. Lyapunov, A.: Sur les fonctions-vecteur complétement additives. Bull. Acad. Sci. USSR Ser. Math.4, 465–478 (1940)

    Google Scholar 

  20. Mordukhvich, B.: Variational Analysis and Generalized Differentiation II. Springer, Berlin (2006)

    Book  Google Scholar 

  21. Nemirovski, A., Juditsky, A., Lan, G., Shapiro, A.: Robust stochastic approximation approach to stochastic programming. SIAM J. Optim.19, 1574–1906 (2009)

    Article MathSciNet  Google Scholar 

  22. Ralph, D., Xu, H.: Convergence of stationary points of sample average two stage stochastic programs: a generalized equation approach. Math. Oper. Res.36, 568–592 (2011)

    Article MathSciNet  Google Scholar 

  23. Richter, H.: Verallgemeinerung eines in der statistik benötigten satzes der masstheorie. Math. Ann.150, 85–90 (1963)

    Article MathSciNet  Google Scholar 

  24. Rockafellar, R.T., Uryasev, S.: Optimization of conditional value-at-risk. J. Risk2, 21–41 (2000)

    Article  Google Scholar 

  25. Rockafellar, R.T.: Integral functionals, normal integrands and measurable selections. In: Nonlinear Operators in the Calculus of Variations, Volume 543 in Lecture Notes in Mathematics, pp. 157–207. Springer, New York (1976)

  26. Rockafellar, R.T., Wets, R.: On the interchange of subdifferentiation and conditional expectation for convex functions. Stochastics7, 173–182 (1982)

    Article MathSciNet  Google Scholar 

  27. Rockafellar, R.T., Wets, R.: Variational Analysis. Springer, New York (1998)

    Book  Google Scholar 

  28. Rudin, W.: Principles of Mathematical Analysis, 3rd edn. McGraw-Hill, San Francisco (1976)

    MATH  Google Scholar 

  29. Shapiro, A., Dentcheva, D., Ruszczynski, A.: Lectures on Stochastic Programming: Modeling and Theory. SIAM, Philadelphia (2009)

    Book  Google Scholar 

  30. Tardella, F.: A new proof of the Lyapunov convexity theorem. SIAM J. Control Optim.28, 478–481 (1990)

    Article MathSciNet  Google Scholar 

  31. Wets, R.: Stochastic programming. In: Nemhauser, G.L., et al. (eds.) Handbooks in OR & MS, vol. 1, pp. 573–629 (1989)

  32. Xu, H.: An implicit programming approach for a class of stochastic mathematical programs with complementarity constraints. SIAM J. Optim.16, 670–696 (2006)

    Article MathSciNet  Google Scholar 

  33. Xu, H., Ye, J.J.: Necessary optimality conditions for two-stage stochastic programs with equilibaium constraints. SIAM J. Optim.20, 1685–1715 (2010)

    Article MathSciNet  Google Scholar 

  34. Xu, H., Zhang, D.: Smooth sample average approximation of stationary points in nonsmooth stochastic optimization and applications. Math. Program.119, 371–401 (2009)

    Article MathSciNet  Google Scholar 

Download references

Acknowledgements

We would like to thank Associate Editor and two referees for their helpful comments.

Author information

Authors and Affiliations

  1. Department of Applied Mathematics, University of Washington, Seattle, USA

    James V. Burke

  2. Department of Applied Mathematics, Hong Kong Polytechnic University, Hong Kong, China

    Xiaojun Chen

  3. Jiangsu Key Lab for NSLSCS, School of Mathematical Sciences, Nanjing Normal University, Nanjing, 210023, China

    Hailin Sun

Authors
  1. James V. Burke

    You can also search for this author inPubMed Google Scholar

  2. Xiaojun Chen

    You can also search for this author inPubMed Google Scholar

  3. Hailin Sun

    You can also search for this author inPubMed Google Scholar

Corresponding author

Correspondence toXiaojun Chen.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

This work is support by NSF Grant No. DMS-1908890, Hong Kong Research Grant Council Grant 153000/17P, and NSFC Grant Nos. 11871276 and 11571178.

Appendix: Background

Appendix: Background

1.1Finite-dimensional variational analysis

Since we allow mappings to have infinite values, it is convenient to define the extended reals\({{\overline{{\mathbb {R}}}}}:={\mathbb {R}}\cup {\{+\infty \}}\). Theeffective domain of\(f:\,{\mathbb {R}}^n\rightarrow {{\overline{{\mathbb {R}}}}}\,\), denoted\({\text{ dom }\,}f\subseteq {\mathbb {R}}^n\), is the set on whichf is finite. To avoid certain pathological mappings the discussion is restricted toproper not everywhere infinite)lower semi-continuous (lsc) functions. Of particular importance is theepigraph of such functions:\({\text{ epi }\, f}:=\left\{ (x,\mu )\,\left| \,f(x)\le \mu \right. \right\} \). We have thatf is lsc if and only if\({\text{ epi }\, f}\) is closed, andf is convex if and only if\({\text{ epi }\, f}\) is convex.

Definition 8

(Subderivatives) [27, Exercise 9.15] For a locally Lipschitz function\(f:\,{\mathbb {R}}^n\rightarrow {{\overline{{\mathbb {R}}}}}\,\) near a point\({{u}_*}\in {\mathbb {R}}^n\) with\(f({{u}_*})\) finite,

  1. (i)

    thesubderivative\(df({{u}_*}):{\mathbb {R}}^n\rightarrow {{\overline{{\mathbb {R}}}}}\) is defined by

    $$\begin{aligned} df({{u}_*})(w):= \underset{\tau \downarrow 0}{\lim \inf ~} \frac{f({{u}_*}+\tau w) - f({{u}_*})}{\tau }; \end{aligned}$$
  2. (ii)

    theregular subderivative (or the Clarke generalized directional derivative whenf is locally Lipschitz)\(~{\widehat{d}}f({{u}_*}):{\mathbb {R}}^n\rightarrow {{\overline{{\mathbb {R}}}}}~\) is defined by

    $$\begin{aligned} {{{\widehat{d}}}}f({{u}_*})(w):= \underset{u\rightarrow {{u}_*},\,\tau \downarrow 0}{\lim \sup }\frac{f(u+\tau w)-f(u)}{\tau }. \end{aligned}$$

Definition 9

(Subgradients, subdifferentials and subdifferential regularity) Consider a locally Lipschitz function\(f:{\mathbb {R}}^n\rightarrow {{\overline{{\mathbb {R}}}}}\), a point\(v\in {\mathbb {R}}^n\), and a point\({{u}_*}\in {\mathbb {R}}^n\) with\(f({{u}_*})\) finite.

  1. (i)

    [27, Theorem 8.49] The vectorv is aClarke subgradient off at\({{u}_*}\) ifv satisfies

    $$\begin{aligned} {{{\widehat{d}}}}f({{u}_*})(w)\ge \left\langle v\, ,\, w\right\rangle ~\forall ~w\in {\mathbb {R}}^n. \end{aligned}$$

    We call the set of Clarke subgradientsv theClarke subdifferential off at\({{u}_*}\) and denote this set by\(\partial f({{u}_*})\).

  2. (ii)

    [27, Corollary 8.19]\(f:\,{\mathbb {R}}^n\rightarrow {{\overline{{\mathbb {R}}}}}\,\) is said to besubdifferentially regular (or Clarke regular) at\({{u}_*}\in {\text{ dom }\,}f\) with\(\partial f({{u}_*})\ne \emptyset \) if

    $$\begin{aligned} df({{u}_*})(w) = {{{\widehat{d}}}}f({{u}_*})(w)\quad \forall \, w\in {\mathbb {R}}^n. \end{aligned}$$
  3. (iii)

    [14, Definition 2.6.1] [12] The vectorv is aB-subgradient off at\({{u}_*}\) if

    $$\begin{aligned} v=\lim _{u^k\rightarrow {{u}_*}} \nabla f(u^k), \quad \mathrm{where }\,\, f \,\, \text{ is } \text{ differentiable } \text{ at }\,\, u^k. \end{aligned}$$

    We call the set ofB-subgradientsv off at\({{u}_*}\) theB-subdifferential off at\({{u}_*}\) and denote this set by\(\partial ^B f({{u}_*})\).

  4. (iv)

    [27, Definition 8.3] The vectorv is anM-subgradient off at\({{u}_*}\) if there are sequences\( u^k\rightarrow {{u}_*}\) and\(v^k \rightarrow v\) with

    $$\begin{aligned} \underset{u\rightarrow u^k}{\lim \inf ~}\frac{f(u)-f(u^k) - \left\langle v^k\, ,\, u-u^k\right\rangle }{\Vert u-u^k\Vert }\ge 0. \end{aligned}$$

    We call the set ofM-subgradientsv off at\({{u}_*}\) theM-subdifferential off at\({{u}_*}\) and denote this set by\(\partial ^M f({{u}_*})\).

Remark 6

In [27], the notion of subdifferential regularity is defined in [27, Definition 7.25]. In the definition given above we employ characterizations of this notion given by the cited results. Note that subdifferential mappings are multi-functions.

Definition 10

(Strict continuity and strict differentiability) Let\(H:\,D\rightarrow {\mathbb {R}}^m\,\),\(D\subseteq {\mathbb {R}}^n\), and\(h:\,{\mathbb {R}}^n\rightarrow {{\overline{{\mathbb {R}}}}}\,\).

  1. (i)

    [Strict Continuity [27, Definition 9.1]] We say thatH is strictly continuous at\({\bar{x}}\in {\text{ int }\left( D\right) }\) if

    $$\begin{aligned} \mathrm {lip}\, H({\bar{x}}):=\limsup _{{\mathop {x\ne x'}\limits ^{x,x'\rightarrow {\bar{x}}}}} \frac{\left\| H(x')-H(x)\right\| }{\left\| x'-x\right\| }<\infty \, . \end{aligned}$$
  2. (ii)

    [Strict Differentiability [27, Definition 9.17]] We say thath is strictly differentiable at a point\({\bar{x}}\in {\text{ dom }\,}{h}\) ifh is differentiable at\({\bar{x}}\) and

    $$\begin{aligned} \lim _{{\mathop {x\ne x'}\limits ^{x,x'\rightarrow {\bar{x}}}}} \frac{h(x')-h(x)-\left\langle \nabla h({\bar{x}})\, ,\, x'-x\right\rangle }{\left\| x'-x\right\| }=0\, . \end{aligned}$$

It is easily seen that ifh is continuously differentiable on an open setU, thenh is strictly differentiable and subdifferentially regular onU with\(\partial h(x)=\{\nabla h(x)\}\) for all\(x\in U\) ([27, Theorem 9.18 and Exercise 9.64]).

The notion of strict continuity off at a point\({\bar{x}}\) implies the existence of a neighborhood of\({\bar{x}}\) on whichf is Lipschitz continuous, that is,f is locally Lipschitz continuous at\({\bar{x}}\) where the local Lipschitz modulus is lower bounded by\(\mathrm {lip}\, H({\bar{x}})\). In this light, Definition8 and Definition 9(ii) combine to tell us that

$$\begin{aligned} df({{u}_*})(w) = {{{\widehat{d}}}}f({{u}_*})(w)=\lim _{\tau \downarrow 0} \frac{f({{u}_*}+\tau w)-f({{u}_*})}{\tau } \quad \forall \, w\in {\mathbb {R}}^n, \end{aligned}$$
(55)

whereverf is strictly continuous and subdifferentially regular at\({{u}_*}\). Moreover, in this case, [27, Theorem 8.30] tells us that

$$\begin{aligned} df(x)(v)=\sup \left\{ \left\langle g\, ,\, v\right\rangle \,\left| \,g\in \partial f(x)\right. \right\} . \end{aligned}$$
(56)

Remark 7

(Subdifferentials of Compositions) If\(g:\,X\subset {\mathbb {R}}^n\rightarrow {{\overline{{\mathbb {R}}}}}\,\) is given as the composition of two functions\(f:\,Y\subset {\mathbb {R}}^m\rightarrow {{\overline{{\mathbb {R}}}}}\,\) and\(h:\,X\rightarrow Y\,\), i.e. \(g(x)=(f\circ h)(x)=f(h(x))\), then we write\(\partial g(x)=\partial (f\circ h)(x).\) On the other hand, we write\(\partial f(h(x))\) to denote the subdifferential off evaluated ath(x).

Theorem 9

(Strict differentiability and the subdifferential) [27, Theorem 9.18] [14, Proposition 2.2.4] Let\(h:\,{\mathbb {R}}^n\rightarrow {{\overline{{\mathbb {R}}}}}\,\) with\({\bar{x}}\in {\text{ dom }\,}{h}\). Thenh is strictly differentiable at\({\bar{x}}\) if and only ifh is strictly continuous at\({\bar{x}}\) and\(\partial h({\bar{x}})=\{\nabla h({\bar{x}})\}\).

1.2Measurable multi-functions

We now review some of the properties of measurable multi-functions used in this paper [2,15,18,27]. For more information on this topic, we refer the interested reader to [27, Chapter 14] and [25].

A multi-function, or multi-valued mapping,S from\({\mathbb {R}}^k\) to\({\mathbb {R}}^s\) is a mapping that takes points in\({\mathbb {R}}^k\) to sets in\({\mathbb {R}}^s\), and is denoted by\(S: {\mathbb {R}}^k \rightrightarrows {\mathbb {R}}^s\). Theouter limit ofS at\({{\bar{x}}}\in {\mathbb {R}}^k\)relative to\(X\subseteq {\mathbb {R}}^k\) is

$$\begin{aligned} \mathop {\mathrm{Limsup}}_{x\rightarrow _X{{\bar{x}}}} S(x):= \big \{v \in {\mathbb {R}}^s\mid \exists \{x^k\}\rightarrow _X {{\bar{x}}}, \{v^k\}\rightarrow v\in {\mathbb {R}}^s: v^k\in S(x^k) \quad \forall k\in {\mathbb {N}}\big \}\nonumber \\ \end{aligned}$$
(57)

and theinner limit ofS at\({{\bar{x}}}\)relative toX is

$$\begin{aligned} \mathop {\mathrm{Liminf}}_{x\rightarrow _X{{\bar{x}}}} S(x):= \big \{v \in {\mathbb {R}}^s \mid \forall \{x^k\}\rightarrow _X {{\bar{x}}}, \,\exists \{v^k\}\rightarrow v\in {\mathbb {R}}^s: v^k\in S(x^k) \quad \forall k\in {\mathbb {N}}\big \}. \end{aligned}$$

Here the notation\(\{x^k\}\rightarrow _X {{\bar{x}}}\) means that\(\{x^k\}\subseteq X\) with\(x^k\rightarrow {{\bar{x}}}\). If\(X={\mathbb {R}}^k\), we write\(x\rightarrow {{\bar{x}}}\) instead of\(x\rightarrow _{{\mathbb {R}}^k}{{\bar{x}}}\). We say thatS isouter semicontinuous (osc) at\({{\bar{x}}}\)relative toX if

$$\begin{aligned} \mathop {\mathrm{Limsup}}_{x\rightarrow _X{{\bar{x}}}} S(x)\subseteq S({{\bar{x}}}). \end{aligned}$$

When the outer and inner limits coincide, we write

$$\begin{aligned} \mathop {\mathrm{Lim}}_{x\rightarrow _X {{\bar{x}}}} S(x):=\mathop {\mathrm{Limsup}}_{x\rightarrow _X {{\bar{x}}}} S(x), \end{aligned}$$

and say thatS iscontiuous at\({{\bar{x}}}\)relative toX.

Let\(\varXi \) be a nonempty subset of\({\mathbb {R}}^\ell \) and let\({{\mathcal {A}}}\) be a\(\sigma \)-field of subsets of\(\varXi \), called themeasurable subsets of\(\varXi \) or the\({{\mathcal {A}}}\)-measurable subsets. Let\(\rho :\,{{\mathcal {A}}}\rightarrow [0,1]\,\) be a\(\sigma \)-finite Borel regular, complete, non-atomic, probability measure on\({{\mathcal {A}}}\). The corresponding measure space is denoted\((\varXi ,{{\mathcal {A}}}, \rho )\). A multi-function\(\varPsi : \varXi \rightrightarrows {\mathbb {R}}^n\) is said to be\({{\mathcal {A}}}\)-measurable, or simply measurable, if for all open sets the set is in\({{\mathcal {A}}}.\) The multi-function\(\varPsi \) is said to be\({{\mathcal {A}}}\otimes {{\mathcal {B}}}^n\)-measurable if\({{\,\mathrm{gph}\,}}(\varPsi ) = \left\{ (\xi ,v)\,\left| \,v\in \varPsi (\xi )\right. \right\} \in {{\mathcal {A}}}\otimes {{\mathcal {B}}}^n\), where\({{\mathcal {B}}}^n\) denotes the Borel\(\sigma \)-field on\({\mathbb {R}}^n\) and\({{\mathcal {A}}}\otimes {{\mathcal {B}}}^n\) is the\(\sigma \)-field on\(\varXi \times {\mathbb {R}}^n\) generated by all sets\(A\times D\) with\(A\in {{\mathcal {A}}}\) and\(D\in {{\mathcal {B}}}^n\). If\(\varPsi (\xi )\) is closed for each\(\xi \) then\(\varPsi \) isclosed-valued. Similarly,\(\varPsi \) is said to beconvex-valued if\(\varPsi (\xi )\) is convex for each\(\xi \). Finally, we note that the completeness of the measure space guarantees the measurability of subsets of\(\varXi \) obtained as the projections of measurable subsets of\(\varXi \times {\mathbb {R}}^n\):

In particular, this implies that the multi-function\(\varPsi \) is\({{\mathcal {A}}}\)-measurable if and only if\({{\,\mathrm{gph}\,}}(\varPsi )\) is\({{\mathcal {A}}}\otimes {{{\mathcal {B}}}}^n\)-measurable [27, Theorem 14.8].

Let\(\varPsi : \varXi \rightrightarrows {\mathbb {R}}^n\), and denote by\(~{{\mathcal {S}}}(\varPsi )~\) the set of\(\rho \)-measurable functions\(f:\,\varXi \rightarrow {\mathbb {R}}^n\,\) that satisfy\(f(\xi )\in \varPsi (\xi )\) for a.e.\(\xi \in \varXi \). We call\(~{{\mathcal {S}}}(\varPsi )~\) theset of measurable selections of\(\varPsi \).

Theorem 10

(Measurable selections) [27, Corollary 14.6] A closed-valued measurable map\(\varPsi : \varXi \rightrightarrows {\mathbb {R}}^n\) always admits a measurable selection.

We say that the measurable multi-function\(\varPsi : \varXi \rightrightarrows {\mathbb {R}}^n\) isintegrably bounded, or for emphasis\(\rho \)-integrably bounded, if there is a\(\rho \)-integrable function\(a:\,\varXi \rightarrow {\mathbb {R}}^n_+\,\) such that

$$\begin{aligned} \Vert v\Vert _\infty \le a(\xi ) \end{aligned}$$
(58)

for all pairs\((\xi ,v)\in \varXi \times {\mathbb {R}}^n\) satisfying\(v\in \varPsi (\xi ).\) Here and elsewhere we interpret vector inequalities as element-wise inequalities. Let\(1\le p\le \infty \). When\(\varXi = {\mathbb {R}}^{\ell }\), we let\(L^p_m({\mathbb {R}}^{\ell },{{\mathcal {A}}},\rho )\) denote the Banach space of functions mapping\({\mathbb {R}}^{\ell }\) to\({\mathbb {R}}^m\). When\(p=2\),\(L^2_m({\mathbb {R}}^{\ell },{{\mathcal {A}}},\rho )\) is a Hilbert space with the inner product on the measure space\(({\mathbb {R}}^{\ell },{{\mathcal {A}}},\rho )\) given by

$$\begin{aligned} \langle \psi ,\,\phi \rangle _\rho = \int _{{\mathbb {R}}^{\ell }} \left\langle \psi (\xi )\, ,\, \phi (\xi )\right\rangle d\rho , \end{aligned}$$

where\(\left\langle \cdot \, ,\, \cdot \right\rangle \) denotes the Euclidean inner product. If\(\rho ({\mathbb {R}}^{\ell })<\infty \), then

$$\begin{aligned} L^q_m({\mathbb {R}}^{\ell },{{\mathcal {A}}},\rho )\subseteq L^p_m({\mathbb {R}}^{\ell },{{\mathcal {A}}},\rho )\ \text{ whenever } \ 1\le p\le q\le \infty . \end{aligned}$$

If the functiona in (58) is such that\(\left\| a(\xi )\right\| _{\scriptscriptstyle p}\) is integrable with respect to the measure\(\rho \) on the measure space\((\varXi ,{{\mathcal {A}}},\rho )\), then the multi-function\(\varPsi \) is said to be\(L^p\)-bounded, where\(\left\| \cdot \right\| _{\scriptscriptstyle p}\) denotes the p-norm of vectors.

Proposition 2

[7, Proposition 2.2] and [16, Corollary IV.8.4](Weak compactness of measurable selections) Let the multi-function\(\varPsi :{\mathbb {R}}^{\ell }\rightrightarrows {\mathbb {R}}^m\) be closed- and convex-valued, and\(L^2\)-bounded on\(L^2_m({\mathbb {R}}^{\ell },{{\mathcal {M}}}^n,\lambda _n)\), where\({{\mathcal {M}}}^n\) is the Lebesgue field on\({\mathbb {R}}^n\) and\(\lambda _n\) isn-dimensional Lebesgue measure. Then the set of measurable selections\({{\mathcal {S}}}(\varPsi )\) is a weakly compact, convex set in\(L^2_m({\mathbb {R}}^{\ell },{{\mathcal {M}}}^n,\lambda _n)\).

We now develop some properties of integrals of multi-valued mappings. Given a measurable multi-function\(\varPsi : \varXi \rightrightarrows {\mathbb {R}}^n\), we define the integral of\(\varPsi \) over\(\varXi \) with respect to the measure\(\rho \) by

$$\begin{aligned} \int \varPsi d\rho :=\left\{ \int _\varXi f d\rho \,\left| \,f\in {\mathcal {S}}(\varPsi )\right. \right\} . \end{aligned}$$

The next theorem, due to Hildenbrand [18], is a restatement of Theorems 3 and 4 of Aumann [2] for multi-functions on the non-atomic measure space\((\varXi ,{{\mathcal {A}}},\rho )\). These results are central to the theory of integrals of multi-valued functions.

Theorem 11

(Integrals of multi-functions) [18, Theorem 4 and Proposition 7] The following properties hold for integrably bounded multi-functions\(\varPsi : \varXi \rightrightarrows {\mathbb {R}}^n\) on non-atomic measure spaces\((\varXi ,{{\mathcal {A}}},\rho )\).

  1. (a)

    If\(\varPsi \) is\({{\mathcal {A}}}\otimes {{\mathcal {B}}}^n\)-measurable, then\(\int \varPsi d\rho = \int {{\,\mathrm{conv\,}\,}}\varPsi d\rho \).

  2. (b)

    If\(\varPsi \) is closed valued (not necessarily\({{\mathcal {A}}}\otimes {{\mathcal {B}}}^n\)-measurable), then\(\int \varPsi d\rho \) is compact.

We conclude this section with a very elementary, but useful lemma on measurabletubes, i.e. multi-valued mappings\(\varPsi : \varXi \rightrightarrows {\mathbb {R}}^n\) of the form

$$\begin{aligned} \varPsi (\xi ):=\kappa (\xi ){\mathbb {B}}, \end{aligned}$$
(59)

where\({\mathbb {B}}:=\left\{ x\,\left| \,\left\| x\right\| _2\le 1\right. \right\} \) is the closed unit ball in\({\mathbb {R}}^n\) and\(\kappa :\,\varXi \rightarrow {\mathbb {R}}_+\,\) is measurable.

Lemma 11

(Tubes) Let\(\varPsi : \varXi \rightrightarrows {\mathbb {R}}^n\) be a measurable tube as in (59) with\(\kappa \in L^2_1(\varXi ,{{\mathcal {A}}},\rho )\) non-negative a.e. on\(\varXi \). Then, for every\(E\in {{\mathcal {A}}}\),\(\int _E\varPsi (\xi ) d\rho \subseteq \left[ \int _E\kappa (\xi ) d\rho \right] {\mathbb {B}}\subseteq \left\| {{\kappa }}\right\| _2\rho (E){\mathbb {B}}\).

Proof

The mapping\(\varPsi \) in (59) is obviously closed valued and measurable. Therefore, Theorem 10 tells us that\({{\mathcal {S}}}(\varPsi )\) is non-empty. Let\(E\in {{\mathcal {A}}}\) and\(s\in {{\mathcal {S}}}(\varPsi )\). Then

$$\begin{aligned} \left| \int _Es(\xi ) d\rho \right| \le \int _E|s(\xi )| d\rho \le \int _E \kappa (\xi ) d\rho , \end{aligned}$$

so that\(\int _Es(\xi ) d\rho \in \left[ \int _E\kappa (\xi ) d\rho \right] {\mathbb {B}}\). This proves the lemma since\( \int _E \kappa (\xi ) d\rho =\left\langle {{\kappa }}\, ,\, {{\mathcal {X}}}_E\right\rangle \le \left\| {{\kappa }}\right\| _2\rho (E).\)

Rights and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Burke, J.V., Chen, X. & Sun, H. The subdifferential of measurable composite max integrands and smoothing approximation.Math. Program.181, 229–264 (2020). https://doi.org/10.1007/s10107-019-01441-9

Download citation

Keywords

Mathematics Subject Classification

Access this article

Subscribe and save

Springer+ Basic
¥17,985 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price includes VAT (Japan)

Instant access to the full article PDF.

Advertisement


[8]ページ先頭

©2009-2025 Movatter.jp