Movatterモバイル変換


[0]ホーム

URL:


Skip to main content
Springer Nature Link
Log in

An end-to-end joint learning framework of artery-specific coronary calcium scoring in non-contrast cardiac CT

  • Published:
Computing Aims and scope Submit manuscript

Abstract

Accurate identification and quantification of coronary artery calcification play an import role in early diagnosis of coronary heart disease and atherosclerosis. In this paper, we have proposed an end-to-end joint learning framework (CAC-Net) for artery-specific coronary calcification identification in non-contrast cardiac CT. Unlike the previous methods, the framework establish direct mapping relationship between input CT and calcification, consequently, it can directly yield accurate results based on the given CT scans in testing process. In this framework, the intra-slice calcification features are collected by an U-DenseNet module, which is the combination of Dense Convolutional Network (DenseNet) and U-Net. Subsequently, 3D U-Net is performed to extract the inter-slice calcification feature. Joint learning of 2D and 3D module brings rich semantic features, which are beneficial to artery-specific calcification identification. In our experiment, 169 non-contrast CT exams collected from two centers are used to validate the performance of our framework. By the cross validation, we have achieved a sensitivity of 0.905, a PPV of 0.966 for calcification number and a sensitivity of 0.933, a PPV of 0.960 and a F1 score of 0.946 for calcification volume, respectively. The intra-class correlation coefficient are 0.986 for Agatston score and 0.982 for volume score. The quantitative results indicate that our method can be used as a reliable clinical diagnostic tool for coronary calcification identification.

This is a preview of subscription content,log in via an institution to check access.

Access this article

Log in via an institution

Subscribe and save

Springer+ Basic
¥17,985 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price includes VAT (Japan)

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

Explore related subjects

Discover the latest articles, news and stories from top researchers in related subjects.

References

  1. Yeboah J, McClelland RL, Polonsky TS, Burke GL, Sibley CT, OLeary D, Carr JJ, Goff DC, Greenland P, Herrington DM (2012) Comparison of novel risk markers for improvement in cardiovascular risk assessment in intermediate-risk individuals. Jama 308(8):788–795

    Article  Google Scholar 

  2. Goff DC, Lloyd-Jones DM, Bennett G, Coady S, Dagostino RB, Gibbons R, Greenland P, Lackland DT, Levy D, ODonnell CJ et al (2014) 2013 acc/aha guideline on the assessment of cardiovascular risk: a report of the american college of cardiology/american heart association task force on practice guidelines. J Am Coll Cardiol 63(25):2935–2959

    Article  Google Scholar 

  3. Mittal S, Zheng Y, Georgescu B, Vega-Higuera F, Zhou SK, Meer P, Comaniciu D (2010) Fast automatic detection of calcified coronary lesions in 3D cardiac CT images. In: International workshop on machine learning in medical imaging. Springer, pp 1–9

  4. Priyatharshini R, Chitrakala S (2016) An active contour model based multi objective optimization technique for coronary calcium scoring. J Med Imaging Health Inf 6(7):1657–1662

    Article  Google Scholar 

  5. Eilot D, Goldenberg R (2014) Fully automatic model-based calcium segmentation and scoring in coronary CT angiography. Int J Comput Assist Radiol Surg 9(4):595–608

    Article  Google Scholar 

  6. Isgum I, Prokop M, Niemeijer M, Viergever MA, Van Ginneken B (2012) Automatic coronary calcium scoring in low-dose chest computed tomography. IEEE Trans Med Imaging 31(12):2322–2334

    Article  Google Scholar 

  7. González G, Washko GR, Estépar RSJ (2016) Automated agatston score computation in a large dataset of non ECG-gated chest computed tomography. In: 2016 IEEE 13th international symposium on biomedical imaging (ISBI), IEEE, pp 53–57

  8. Zhang J, Liu P, Zhang F, Song Q (2018) Cloudnet: ground-based cloud classification with deep convolutional neural network. Geophys Res Lett 45(16):8665–8672

    Google Scholar 

  9. Xue W, Islam A, Bhaduri M, Li S (2017) Direct multitype cardiac indices estimation via joint representation and regression learning. IEEE Trans Med Imaging 36(10):2057–2067

    Article  Google Scholar 

  10. Wu S, Gao Z, Liu Z, Luo J, Zhang H, Li S (2018) Direct reconstruction of ultrasound elastography using an end-to-end deep neural network. In: International conference on medical image computing and computer-assisted intervention, Springer, pp 374–382

  11. Wolterink JM, Leiner T, de Vos BD, van Hamersvelt RW, Viergever MA, Išgum I (2016) Automatic coronary artery calcium scoring in cardiac CT angiography using paired convolutional neural networks. Med Image Anal 34:123–136

    Article  Google Scholar 

  12. Lessmann N, van Ginneken B, Zreik M, de Jong PA, de Vos BD, Viergever MA, Išgum I (2018) Automatic calcium scoring in low-dose chest CT using deep neural networks with dilated convolutions. IEEE Trans Med Imaging 37(2):615–625

    Article  Google Scholar 

  13. Kurkure U, Chittajallu DR, Brunner G, Le YH, Kakadiaris IA (2010) A supervised classification-based method for coronary calcium detection in non-contrast CT. Int J Cardiovasc Imaging 26(7):817–828

    Article  Google Scholar 

  14. Wolterink JM, Leiner T, Takx RA, Viergever MA, Išgum I (2015) Automatic coronary calcium scoring in non-contrast-enhanced ECG-triggered cardiac CT with ambiguity detection. IEEE Trans Med Imaging 34(9):1867–1878

    Article  Google Scholar 

  15. Yang G, Chen Y, Ning X, Sun Q, Shu H, Coatrieux JL (2016) Automatic coronary calcium scoring using noncontrast and contrast CT images. Med Phys 43(5):2174–2186

    Article  Google Scholar 

  16. Li X, Chen H, Qi X, Dou Q, Fu CW, Heng PA (2017) H-denseunet: Hybrid densely connected unet for liver and liver tumor segmentation from CT volumes. arXiv preprintarXiv:1709.07330

  17. Huang G, Liu Z, Weinberger KQ, van der Maaten L (2017) Densely connected convolutional networks. In: Proceedings of the IEEE conference on computer vision and pattern recognition, vol 1, p 3

  18. Ronneberger O, Fischer P, Brox T (2015) U-net: convolutional networks for biomedical image segmentation. In: International conference on medical image computing and computer-assisted intervention, Springer, pp 234–241

  19. Jégou S, Drozdzal M, Vazquez D, Romero A, Bengio Y (2017) The one hundred layers tiramisu: Fully convolutional densenets for semantic segmentation. In: 2017 IEEE conference on computer vision and pattern recognition workshops (CVPRW), IEEE, pp 1175–1183

  20. Wu Y, He K (2018) Group normalization. arXiv preprintarXiv:1803.08494

  21. Milletari F, Navab N, Ahmadi SA (2016) V-net: Fully convolutional neural networks for volumetric medical image segmentation. In: 2016 fourth international conference on 3D vision (3DV), IEEE, pp 565–571

  22. Wolterink JM, Leiner T, De Vos BD, Coatrieux JL, Kelm BM, Kondo S, Salgado RA, Shahzad R, Shu H, Snoeren M et al (2016) An evaluation of automatic coronary artery calcium scoring methods with cardiac CT using the orcascore framework. Med Phys 43(5):2361–2373

    Article  Google Scholar 

  23. Callister TQ, Cooil B, Raya SP, Lippolis NJ, Russo DJ, Raggi P (1998) Coronary artery disease: improved reproducibility of calcium scoring with an electron-beam CT volumetric method. Radiology 208(3):807–814

    Article  Google Scholar 

  24. Išgum I, Rutten A, Prokop M, van Ginneken B (2007) Detection of coronary calcifications from computed tomography scans for automated risk assessment of coronary artery disease. Med Phys 34(4):1450–1461

    Article  Google Scholar 

  25. Brunner G, Chittajallu DR, Kurkure U, Kakadiaris IA (2010) Toward the automatic detection of coronary artery calcification in non-contrast computed tomography data. Int J Cardiovasc Imaging 26(7):829–838

    Article  Google Scholar 

  26. Shahzad R, van Walsum T, Schaap M, Rossi A, Klein S, Weustink AC, de Feyter PJ, van Vliet LJ, Niessen WJ (2013) Vessel specific coronary artery calcium scoring: an automatic system. Acad Radiol 20(1):1–9

    Article  Google Scholar 

  27. Long J, Shelhamer E, Darrell T (2015) Fully convolutional networks for semantic segmentation. In: Proceedings of the IEEE conference on computer vision and pattern recognition, pp 3431–3440

  28. Goodfellow I, Pouget-Abadie J, Mirza M, Xu B, Warde-Farley D, Ozair S, Courville A, Bengio Y (2014) Generative adversarial nets. In: Advances in neural information processing systems, pp 2672–2680

  29. Li J, Liang X, Wei Y, Xu T, Feng J, Yan S (2017) Perceptual generative adversarial networks for small object detection. In: IEEE CVPR

Download references

Author information

Authors and Affiliations

  1. School of Computer Science and Technology, Anhui University, Hefei, Anhui, China

    Weiwei Zhang, Xiuquan Du & Yanping Zhang

  2. School of Atmospheric Sciences, Nanjing University of Information Science and Technology, Nanjing, Jiangsu, China

    Jinglin Zhang

  3. Department of Medical Imaging, Western University, London, ON, Canada

    Shuo Li

Authors
  1. Weiwei Zhang

    You can also search for this author inPubMed Google Scholar

  2. Jinglin Zhang

    You can also search for this author inPubMed Google Scholar

  3. Xiuquan Du

    You can also search for this author inPubMed Google Scholar

  4. Yanping Zhang

    You can also search for this author inPubMed Google Scholar

  5. Shuo Li

    You can also search for this author inPubMed Google Scholar

Corresponding author

Correspondence toXiuquan Du.

Rights and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhang, W., Zhang, J., Du, X.et al. An end-to-end joint learning framework of artery-specific coronary calcium scoring in non-contrast cardiac CT.Computing101, 667–678 (2019). https://doi.org/10.1007/s00607-018-0678-6

Download citation

Keywords

Mathematics Subject Classification

Access this article

Subscribe and save

Springer+ Basic
¥17,985 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price includes VAT (Japan)

Instant access to the full article PDF.

Advertisement


[8]ページ先頭

©2009-2025 Movatter.jp