Movatterモバイル変換


[0]ホーム

URL:


Skip to main content

Advertisement

Springer Nature Link
Log in

A new feature extraction technique based on improved owl search algorithm: a case study in copper electrorefining plant

  • Original Article
  • Published:
Neural Computing and Applications Aims and scope Submit manuscript

Abstract

Feature extraction, feature clustering, feature selection are suitable to enhance learning performance, reduce computational complexity, create better generalizable models, and reduce required storage. Although there are several feature reduction techniques, still it remains one of the research hot spots in the field of data mining and machine learning groups. Owl search algorithm (OSA) is one of the recent metaheuristic optimization algorithms that mimic the hunting mechanism of owls in dark. However, OSA suffers from the same problem faced by many other optimization algorithms and tends to fall in local optima and premature convergence. To overcome these problems, two improvements for OSA algorithm are proposed in this paper. The first improvement uses a fuzzy system which is responsible to tune a control parameter in the updating phase of OSA. The second improvement includes the fuzzy system along with modifying the updating equation of OSA to enhance the exploration activity. In addition, this paper presents a new feature extraction technique for regression problems based on the improved OSA, called Fuzzy Owl Clustering Dimension Reduction (FOCDR). We apply a method that uses three weighting methods (i.e., soft, hard, and mixed) to extract new features based on the generated clusters. The experiment is divided into two parts. In the first part, the performance of the OSA algorithm and two improvement versions are analyzed with ten benchmark functions. The results show that the proposed versions on average can improve the convergence rate by 6.75% and 14.2% compared to OSA in solving complex problems. The second part is conducted to show FOCDR’s ability for feature selection problems. The effectiveness of FOCDR has been evaluated using four benchmark datasets and a real-world case study.

This is a preview of subscription content,log in via an institution to check access.

Access this article

Log in via an institution

Subscribe and save

Springer+ Basic
¥17,985 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price includes VAT (Japan)

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18
Fig. 19
Fig. 20
Fig. 21
Fig. 22
Fig. 23
Fig. 24
Fig. 25
Fig. 26
Fig. 27
Fig. 28
Fig. 29
Fig. 30
Fig. 31
Fig. 32
Fig. 33
Fig. 34
Fig. 35
Fig. 36
Fig. 37
Fig. 38
Fig. 39
Fig. 40
Fig. 41
Fig. 42
Fig. 43
Fig. 44
Fig. 45
Fig. 46
Fig. 47
Fig. 48
Fig. 49
Fig. 50
Fig. 51
Fig. 52
Fig. 53
Fig. 54
Fig. 55
Fig. 56
Fig. 57
Fig. 58
Fig. 59
Fig. 60
Fig. 61
Fig. 62
Fig. 63

Similar content being viewed by others

Explore related subjects

Discover the latest articles, news and stories from top researchers in related subjects.

References

  1. Kılıç F, Kaya Y, Yildirim S (2021) A novel multi population based particle swarm optimization for feature selection. Knowl Based Syst 219:1068.https://doi.org/10.1016/j.knosys.2021.106894

    Article  Google Scholar 

  2. Pes B (2020) Ensemble feature selection for high-dimensional data: a stability analysis across multiple domains. Neural Comput Appl 32:5951–5973.https://doi.org/10.1007/s00521-019-04082-3

    Article  Google Scholar 

  3. Brahim AB (2021) Stable feature selection based on instance learning, redundancy elimination and efficient subsets fusion. Neural Comput Appl 33:1221–1232.https://doi.org/10.1007/s00521-020-04971-y

    Article  Google Scholar 

  4. Hancer E (2020) New filter approaches for feature selection using differential evolution and fuzzy rough set theory. Neural Comput Appl 32:2929–2944.https://doi.org/10.1007/s00521-020-04744-7

    Article  Google Scholar 

  5. Rao H, Shi X, Kouassi Rodrigue A, Feng J, Xia Y, Elhoseny M, Yuan X, Gu L (2019) Feature selection based on artificial bee colony and gradient boosting decision tree. Appl Soft Comput 74:634–642

    Article  Google Scholar 

  6. Tembhurne O, Shrimankar D (2018) N-PSO: endmember extraction using advance particle swarm optimization for NLMM. Sādhanā 43(141):1–14.https://doi.org/10.1007/s12046-018-0839-5

    Article MathSciNet MATH  Google Scholar 

  7. Mukherjee S, Bhaumik L (2019) Simultaneous clustering and feature selection using nature-inspired algorithm. Advances in computer, communication and control. Springer, Singapore, pp 545–550

    Chapter  Google Scholar 

  8. Hashemzadeh M, Golzari Oskouei A, Farajzadeh N (2019) New fuzzy C-means clustering method based on feature-weight and cluster-weight learning. Appl Soft Comput 78:324–345.https://doi.org/10.1016/j.asoc.2019.02.038

    Article  Google Scholar 

  9. Truong Tran C, Zhang M, Andreae P, Bing Xue L, Bui Thu (2018) Improving performance of classification on incomplete data using feature selection and clustering. Appl Soft Comput 73:848–861.https://doi.org/10.1016/j.asoc.2018.09.026

    Article  Google Scholar 

  10. Al Kindhi B, Arief Sardjono T, Hery Purnomo M, Jacob Verkerkede G (2019) Hybrid K-means, fuzzy C-means, and hierarchical clustering for DNA hepatitis C virus trend mutation analysis. Exp Syst Appl 121:373–381.https://doi.org/10.1016/j.eswa.2018.12.019

    Article  Google Scholar 

  11. Liu Y, Tian F, Hu Z, DeLisi C (2015) Evaluation and integration of cancer gene classifiers: identification and ranking of plausible drivers. Sci Rep.https://doi.org/10.1038/srep10204

    Article  Google Scholar 

  12. Goswami S, Kumar Das A, Chakrabarti A, Chakraborty B (2017) A feature cluster taxonomy based feature selection technique. Exp Syst Appl 79:76–89.https://doi.org/10.1016/j.eswa.2017.01.044

    Article  Google Scholar 

  13. Manikandan G, Abirami S (2018) A survey on feature selection and extraction techniques for high-dimensional microarray datasets. Knowledge computing and its applications. Springer, Singapore, pp 311–333

    Chapter  Google Scholar 

  14. Hussain K, Neggaz N, Zhu W, Houssein EH (2021) An efficient hybrid sine-cosine Harris hawks optimization for low and high-dimensional feature selection. Exp Syst Appl 176:114778.https://doi.org/10.1016/j.eswa.2021.114778

    Article  Google Scholar 

  15. Hancer E (2020) A new multi-objective differential evolution approach for simultaneous clustering and feature selection. Engineering Applications of Artificial Intell 87:103307.https://doi.org/10.1016/j.engappai.2019.103307

    Article  Google Scholar 

  16. Rostami M, Berahmand K, Nasiri E, Forouzandeh S (2021) Review of swarm intelligence-based feature selection methods. Eng Appl Artif Intell 100:104210.https://doi.org/10.1016/j.engappai.2021.104210

    Article  Google Scholar 

  17. Ghimatgar H, Kazemi K, Sadegh Helfroush M, Aarabi A (2018) An improved feature selection algorithm based on graph clustering and ant colony optimization. Knowl Based Syst 159(1):270–285.https://doi.org/10.1016/j.knosys.2018.06.025

    Article  Google Scholar 

  18. Hashemzadeh M, Golzari Oskouei A, Farajzadeh N (2019) New fuzzy C-means clustering method based on feature-weight and cluster-weight learning. Appl Soft Comput J 78:324–345.https://doi.org/10.1016/j.asoc.2019.02.038

    Article  Google Scholar 

  19. Yang MS, Nataliani Y (2018) A feature-reduction fuzzy clustering algorithm based on feature-weighted entropy. IEEE Trans Fuzzy Syst 26(2):817–835.https://doi.org/10.1109/TFUZZ.2017.2692203

    Article  Google Scholar 

  20. Huang X, Zhang L, Wang B, Li F, Zhang Z (2018) Feature clustering based support vector machine recursive feature elimination for gene selection. Appl Intell 48(10):594–607.https://doi.org/10.1007/s10489-017-0992-2

    Article  Google Scholar 

  21. Tran B, Xue B, Zhang M (2017) Using feature clustering for GP-based feature construction on high-dimensional data. Eur Conf Genet Program.https://doi.org/10.1007/978-3-319-55696-3_14

    Article  Google Scholar 

  22. Jain M, Maurya S, Rani A, Singh V (2018) Owl search algorithm: a novel nature-inspired heuristic paradigm for global optimization. J Intell Fuzzy Syst 34(3):1573–1582.https://doi.org/10.3233/JIFS-169452

    Article  Google Scholar 

  23. Melin P, Olivas F, Castillo O, Valdez F, Soria J, Valdez M (2013) Optimal design of fuzzy classification systems using PSO with dynamic parameter adaptation through fuzzy logic. Expert Syst Appl 40(8):3196–3206.https://doi.org/10.1016/j.eswa.2012.12.033

    Article  Google Scholar 

  24. Xue J, Shen B (2020) A novel swarm intelligence optimization approach: sparrow search algorithm. Syst Sci Control Eng 8(1):22–34.https://doi.org/10.1080/21642583.2019.1708830

    Article  Google Scholar 

  25. Sun Y, Yang T, Liu Z (2019) A whale optimization algorithm based on quadratic interpolation for high-dimensional global optimization problems. Appl Soft Comput 85:105744.https://doi.org/10.1016/j.asoc.2019.105744

    Article  Google Scholar 

  26. Saremi S, Mirjalili S, Lewis A (2014) Biogeography-based optimisationwith chaos. Neural Comput Appl 25(5):1077–1097.https://doi.org/10.1007/s00521-014-1597-x

    Article  Google Scholar 

  27. Xu RF, Lee SJ (2015) Dimensionality reduction by feature clustering for regression problems. Inf Sci 299:42–57.https://doi.org/10.1016/j.ins.2014.12.003

    Article MathSciNet MATH  Google Scholar 

  28. Wang H, Zheng B, Yoon SW, Ko HS (2018) A support vector machine-based ensemble algorithm for breast cancer diagnosis. Eur J Oper Res 267(2):687–699.https://doi.org/10.1016/j.ejor.2017.12.001

    Article MathSciNet MATH  Google Scholar 

  29. Jiang Y, Zhang T, Gou Y, He L, Bai H, Hu C (2018) High-resolution temperature and salinity model analysis using support vector regression. J Amb Intell Human Comput.https://doi.org/10.1007/s12652-018-0896-y

    Article  Google Scholar 

  30. Nahato KB, Nehemiah KH, Kannan A (2016) Hybrid approach using fuzzy sets and extreme learning machine for classifying clinical datasets. Informat Med Unlock 2:1–11.https://doi.org/10.1016/j.imu.2016.01.001

    Article  Google Scholar 

  31. Bansal JC, Singh S (2021) A better exploration strategy in Grey Wolf Optimizer. J Amb Intell Human Comput 12:1099–1118.https://doi.org/10.1007/s12652-020-02153-1

    Article  Google Scholar 

  32. Gao ZM, Zhao J, Li SR, Hu YR (2020) The improved mayfly optimization algorithm. J Phys Conf Series 168:0120.https://doi.org/10.1088/1742-6596/1684/1/012077

    Article  Google Scholar 

  33. Mohammed HM, Umar SU, Rashid TA (2019) A systematic and meta-analysis survey of whale optimization algorithm. Comput Intell Neurosci.https://doi.org/10.1155/2019/8718571

    Article  Google Scholar 

  34. UCI Data Set (2013) <http://archive.ics.uci.edu/ml/>

  35. Li KC (1991) Sliced inverse regression for dimension reduction. J Am Stat Assoc 86(414):316–327

    Article MathSciNet  Google Scholar 

  36. Cook RD, Weisberg S (1991) Sliced inverse regression for dimension reduction: comment. J Am Stat Assoc 86(414):328–332

    MATH  Google Scholar 

  37. Li KC (1992) On principal Hessian directions for data visualization and dimension reduction: another application of Stein’s lemma. J Am Stat Assoc 420:1025–1039.https://doi.org/10.1080/01621459.1992.10476258

    Article MathSciNet MATH  Google Scholar 

  38. Kwak N, Lee JW (2010) Feature extraction based on subspace methods for regression problems. Neurocomputing 73:1740–1751.https://doi.org/10.1016/j.neucom.2009.10.025

    Article  Google Scholar 

  39. Shojaei MR, Khayati GR, Yaghobi NS, Bagheri F, Khorasani SMJ (2021) Removing of Sb and As from electrolyte in copper electrorefining process: a green approach. Int J Eng 34:700–705.https://doi.org/10.5829/ije.2021.34.03c.14

    Article  Google Scholar 

  40. Khazaei Feizabad MH, Khayati GR, Kafi Hernashki R, Khorasani SMJ (2021) Modeling and optimization of charge materials ranges in converter furnace with enhanced passivation time in copper electrorefining process: a mixture design approach. Int J Eng 3(4):966–975

    Google Scholar 

  41. Zeng Q, Li C, Meng Y, Tie J, Zhao R, Zhang Z (2020) Analysis of interelectrode short-circuit current in industrial copper electrorefining cells. Measurement 164:108015.https://doi.org/10.1016/j.measurement.2020.108015

    Article  Google Scholar 

  42. Shojaei M, Khayati GR, Khorasani SMJ, Hernashki RK (2021) Investigation of spring back phenomenon in the 316L stainless steel cathode blank based on the changes in electrical resistivity and magnetic properties due to the residual stress and martensite phase formation: an industrial failure. Eng Fail Anal 126:105473.https://doi.org/10.1016/j.engfailanal.2021.105473

    Article  Google Scholar 

  43. Coetzee C, Tadie M, Dorfling C (2020) Evaluating the effect of molecular properties of polyacrylamide reagents on deposit growth in copper electrowinning. Hydrometallurgy 195:1054.https://doi.org/10.1016/j.hydromet.2020.105407

    Article  Google Scholar 

  44. Zhan X, Lian J, Li H, Wang X, Zhou J, Trieu K, Zhang X (2020) Preparation of highly (111) textured nanotwinned copper by medium-frequency pulsed electrodeposition in an additive-free electrolyte. Electrochim Acta 365:137391.https://doi.org/10.1016/j.electacta.2020.137391

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

  1. Department of Computer Science, Shahid Bahonar University of Kerman, P.O. Box No 76135-133, Kerman, Iran

    Najme Mansouri & Behnam Mohammad Hasani Zade

  2. Department of Materials Science and Engineering, Shahid Bahonar University of Kerman, P.O. Box No 76135-133, Kerman, Iran

    Gholam Reza Khayati

  3. Senior Metallurgical Engineer, Process Control Unit, Khatoonabad Copper Refinery, Shahrebabak Copper Complex, National Iranian Copper Industries Company, Kerman, Iran

    Seyed Mohammad Javad Khorasani

  4. Research & Development Center, Shahrbabak Copper Complex, National Iranian Copper Industries Company, Kerman, Iran

    Roya Kafi Hernashki

Authors
  1. Najme Mansouri

    You can also search for this author inPubMed Google Scholar

  2. Gholam Reza Khayati

    You can also search for this author inPubMed Google Scholar

  3. Behnam Mohammad Hasani Zade

    You can also search for this author inPubMed Google Scholar

  4. Seyed Mohammad Javad Khorasani

    You can also search for this author inPubMed Google Scholar

  5. Roya Kafi Hernashki

    You can also search for this author inPubMed Google Scholar

Corresponding author

Correspondence toNajme Mansouri.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Appendices

Appendix 1

Mathematical of engineering problems.

Tension/compression spring design problem can be model as follows:

Consider

$$x = [x_{1} \,\,x_{2} \,\,x_{3} ] = [d\,\,D\,\,N]$$
$$Min\,f(x) = (x_{3} + 2)x_{2} x_{1}^{2}$$

Subject to

$$g_{1} (x) = 1 - \frac{{x_{2}^{3} x_{3} }}{{71785x_{1}^{4} }} \le 0$$
$$g_{2} (x) = \frac{{4x_{2}^{2} - x_{1} x_{2} }}{{12566(x_{2} x_{1}^{3} - x_{1}^{4} )}} + \frac{1}{{5108x_{1}^{2} }} - 1 \le 0$$
$$g_{3} (x) = 1 - \frac{{140.45x_{1} }}{{x_{2}^{2} x_{3} }} \le 0$$
$$g_{4} (x) = \frac{{x_{1} + x_{2} }}{1.5} - 1 \le 0$$

With\(0.05 \le x_{1} \le 2.0,\,0.25 \le x_{2} \le 1.3\), and\(2.0 \le x_{3} \le 15.0\)

Pressure vessel design problem can be model as follows:

$$Min\,f(x) = 0.6224x_{1} x_{3} x_{4} + 1.7781x_{2} x_{3}^{2} + 3.1661x_{1}^{2} x_{4} + 19.84x_{1}^{2} x_{3}$$

Subject to:

$$g_{1} (x) = - x_{1} + 0.0193x$$
$$g_{2} (x) = - x_{2} + 0.00954x_{3} \le 0$$
$$g_{3} (x) = - \pi x_{3}^{2} x_{4} - (4/3)\pi x_{3}^{3} + 1296000 \le 0$$
$$g_{4} (x) = x_{4} - 240 \le 0$$
$$0 \le x_{i} \le 100,\,\,i = 1,2$$
$$10 \le x_{i} \le 200,\,\,i = 3,4$$

Appendix 2

figure a
figure b
figure c
figure d
figure e
figure f
figure g
figure h

Rights and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Mansouri, N., Khayati, G.R., Mohammad Hasani Zade, B.et al. A new feature extraction technique based on improved owl search algorithm: a case study in copper electrorefining plant.Neural Comput & Applic34, 7749–7814 (2022). https://doi.org/10.1007/s00521-021-06881-z

Download citation

Keywords

Access this article

Subscribe and save

Springer+ Basic
¥17,985 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price includes VAT (Japan)

Instant access to the full article PDF.

Advertisement


[8]ページ先頭

©2009-2025 Movatter.jp