809Accesses
25Citations
Abstract
Teaching–learning-based optimization (TLBO) is one of the latest metaheuristic algorithms being used to solve global optimization problems over continuous search space. Researchers have proposed few variants of TLBO to improve the performance of the basic TLBO algorithm. This paper presents a new variant of TLBO called fuzzy adaptive teaching–learning-based optimization (FATLBO) for numerical global optimization. We propose three new modifications to the basic scheme of TLBO in order to improve its searching capability. These modifications consist, namely of a status monitor, fuzzy adaptive teaching–learning strategies, and a remedial operator. The performance of FATLBO is investigated on four experimental sets comprising complex benchmark functions in various dimensions and compared with well-known optimization methods. Based on the results, we conclude that FATLBO is able to deliver excellence and competitive performance for global optimization.
This is a preview of subscription content,log in via an institution to check access.
Access this article
Subscribe and save
- Get 10 units per month
- Download Article/Chapter or eBook
- 1 Unit = 1 Article or 1 Chapter
- Cancel anytime
Buy Now
Price includes VAT (Japan)
Instant access to the full article PDF.








Similar content being viewed by others
Explore related subjects
Discover the latest articles, news and stories from top researchers in related subjects.References
Goldberg DE (1989) Genetic algorithms in search, optimization and machine learning. Addison-Wesley Longman Publishing Co., Inc., New York
Kennedy J, Eberhart R (1995) Particle swarm optimization. Paper presented at the proceedings of the IEEE international conference on neural networks, Perth, Australia
Storn R, Price K (1997) Differential evolution—a simple and efficient heuristic for global optimization over continuous spaces. J Global Optim 11(4):341–359
Mirjalili S, Mohd Hashim SZ, Moradian Sardroudi H (2012) Training feedforward neural networks using hybrid particle swarm optimization and gravitational search algorithm. Appl Math Comput 218(22):11125–11137. doi:10.1016/j.amc.2012.04.069
Cheng M-Y, Firdausi PM, Prayogo D (2014) High-performance concrete compressive strength prediction using Genetic Weighted Pyramid Operation Tree (GWPOT). Eng Appl Artif Intell 29:104–113. doi:10.1016/j.engappai.2013.11.014
Cheng M-Y, Wibowo DK, Prayogo D, Roy AFV (2015) Predicting productivity loss caused by change orders using the evolutionary fuzzy support vector machine inference model. J Civ Eng Manag 21(7):881–892. doi:10.3846/13923730.2014.893922
Sheikhan M, Ghoreishi SA (2012) Application of covariance matrix adaptation–evolution strategy to optimal control of hepatitis B infection. Neural Comput Appl 23(3):881–894. doi:10.1007/s00521-012-1013-3
Arifovic J (1996) The behavior of the exchange rate in the genetic algorithm and experimental economies. J Polit Econ 104(3):510–541
Cheng M-Y, Prayogo D, Wu Y-W (2014) Novel genetic algorithm-based evolutionary support vector machine for optimizing high-performance concrete mixture. J Comput Civil Eng 28(4):06014003. doi:10.1061/(asce)cp.1943-5487.0000347
Talatahari S, Kheirollahi M, Farahmandpour C, Gandomi AH (2012) A multi-stage particle swarm for optimum design of truss structures. Neural Comput Appl 23(5):1297–1309. doi:10.1007/s00521-012-1072-5
Karaboga D, Basturk B (2007) A powerful and efficient algorithm for numerical function optimization: artificial bee colony (ABC) algorithm. J Glob Optim 39(3):459–471. doi:10.1007/s10898-007-9149-x
Mirjalili S, Mirjalili SM, Hatamlou A (2015) Multi-verse optimizer: a nature-inspired algorithm for global optimization. Neural Comput Appl 27(2):495–513. doi:10.1007/s00521-015-1870-7
Cheng M-Y, Prayogo D (2014) Symbiotic organisms search: a new metaheuristic optimization algorithm. Comput Struct 139:98–112. doi:10.1016/j.compstruc.2014.03.007
Rao RV (2016) Jaya: a simple and new optimization algorithm for solving constrained and unconstrained optimization problems. Int J Ind Eng Comput 7(1):19–34. doi:10.5267/j.ijiec.2015.8.004
Boussaïd I, Lepagnot J, Siarry P (2013) A survey on optimization metaheuristics. Inform Sci 237:82–117. doi:10.1016/j.ins.2013.02.041
Wolpert DH, Macready WG (1997) No free lunch theorems for optimization. IEEE Trans Evol Comput 1(1):67–82
Rao RV, Savsani VJ, Vakharia DP (2011) Teaching–learning-based optimization: a novel method for constrained mechanical design optimization problems. Comput Aided Des 43(3):303–315. doi:10.1016/j.cad.2010.12.015
Rao RV, Savsani VJ, Vakharia DP (2012) Teaching–learning-based optimization: an optimization method for continuous non-linear large scale problems. Inform Sci 183(1):1–15. doi:10.1016/j.ins.2011.08.006
Satapathy S, Naik A (2011) Data clustering based on teaching–learning-based optimization. In: Panigrahi B, Suganthan P, Das S, Satapathy S (eds) Swarm, Evolutionary, and Memetic Computing, Lecture Notes in Computer Science, vol 7077. Springer, Berlin, pp 148–156. doi:10.1007/978-3-642-27242-4_18
Degertekin SO, Hayalioglu MS (2013) Sizing truss structures using teaching–learning-based optimization. Comput Struct 119:177–188. doi:10.1016/j.compstruc.2012.12.011
Rao RV, Kalyankar VD (2013) Parameter optimization of modern machining processes using teaching–learning-based optimization algorithm. Eng Appl Artif Intell 26(1):524–531. doi:10.1016/j.engappai.2012.06.007
Niknam T, Azizipanah-Abarghooee R, Aghaei J (2013) A new modified teaching–learning algorithm for reserve constrained dynamic economic dispatch. IEEE Transa Power Syst 28(2):749–763
Rao RV (2016) Teaching learning based optimization algorithm and its engineering applications. Springer International Publishing, Switzerland. doi:10.1007/978-3-319-22732-0
Rao RV (2016) Review of applications of TLBO algorithm and a tutorial for beginners to solve the unconstrained and constrained optimization problems. Decis Sci Lett 5(1):1–30. doi:10.5267/j.dsl.2015.9.003
Rao RV, Patel V (2012) An elitist teaching-learning-based optimization algorithm for solving complex constrained optimization problems. Int J Ind Eng Comput 3(4):535–560
Satapathy SC, Naik A (2013) A modified teaching–learning-based optimization (mTLBO) for global search. Recent Pat Comput Sci 6(1):60–72
Rao RV, Patel V (2012) An improved teaching-learning-based optimization algorithm for solving unconstrained optimization problems. Sci Iran 20(3):710–720. doi:10.1016/j.scient.2012.12.005
Črepinšek M, Mernik M, Liu S-H (2011) Analysis of exploration and exploitation in evolutionary algorithms by ancestry trees. Int J Innov Comput Appl 3(1):11–19. doi:10.1504/IJICA.2011.037947
Grefenstette JJ (1986) Optimization of control parameters for genetic algorithms. IEEE Trans Syst Man Cybern 16(1):122–128. doi:10.1109/TSMC.1986.289288
Qin AK, Huang VL, Suganthan PN (2009) Differential evolution algorithm with strategy adaptation for global numerical optimization. IEEE Trans Evol Comput 13(2):398–417. doi:10.1109/TEVC.2008.927706
Yang I-T, Hsieh Y-H (2011) Reliability-based design optimization with discrete design variables and non-smooth performance functions: AB-PSO algorithm. Autom Constr 20(5):610–619. doi:10.1016/j.autcon.2010.12.003
Shi Y, Eberhart RC. Fuzzy adaptive particle swarm optimization. In: Proceedings of the 2001 congress on evolutionary computation, 2001, vol 101, pp 101–106. doi:10.1109/CEC.2001.934377
Melin P, Olivas F, Castillo O, Valdez F, Soria J, Valdez M (2013) Optimal design of fuzzy classification systems using PSO with dynamic parameter adaptation through fuzzy logic. Expert Syst Appl 40(8):3196–3206. doi:10.1016/j.eswa.2012.12.033
Liu J, Lampinen J (2004) A fuzzy adaptive differential evolution algorithm. Soft Comput 9(6):448–462. doi:10.1007/s00500-004-0363-x
Liang JJ, Qin AK, Suganthan PN, Baskar S (2006) Comprehensive learning particle swarm optimizer for global optimization of multimodal functions. IEEE Trans Evol Comput 10(3):281–295. doi:10.1109/tevc.2005.857610
Akay B, Karaboga D (2012) A modified Artificial Bee Colony algorithm for real-parameter optimization. Inform Sci 192:120–142. doi:10.1016/j.ins.2010.07.015
Mathur M, Karale SB, Priye S, Jayaraman VK, Kulkarni BD (2000) Ant colony approach to continuous function optimization. Ind Eng Chem Res 39(10):3814–3822. doi:10.1021/ie990700g
Pham DT, Ghanbarzadeh A, Koc E, Otri S, Rahim S, Zaidi M (2006) The Bees Algorithm—a novel tool for complex optimisation problems. Paper presented at the proceedings of the 2nd international virtual conference on intelligent production machines and systems (IPROMS 2006), Oxford
Ahrari A, Atai AA (2010) Grenade explosion method—a novel tool for optimization of multimodal functions. Appl Soft Comput 10(4):1132–1140. doi:10.1016/j.asoc.2009.11.032
Li G, Niu P, Xiao X (2012) Development and investigation of efficient artificial bee colony algorithm for numerical function optimization. Appl Soft Comput 12(1):320–332. doi:10.1016/j.asoc.2011.08.040
Shi YJ, Teng HF, Li ZQ (2005) Cooperative co-evolutionary differential evolution for function optimization. In: Wang L, Chen K, Ong YS (eds) Advances in natural computation. Lecture notes in computer science, vol 3611. Springer, Berlin, pp 1080–1088. doi:10.1007/11539117_147
Author information
Authors and Affiliations
Department of Civil and Construction Engineering, National Taiwan University of Science and Technology, #43, Sec. 4, Keelung Rd., Taipei, 106, Taiwan
Min-Yuan Cheng & Doddy Prayogo
Department of Civil Engineering, Petra Christian University, Jalan Siwalankerto 121-131, Surabaya, 60236, Indonesia
Doddy Prayogo
- Min-Yuan Cheng
You can also search for this author inPubMed Google Scholar
- Doddy Prayogo
You can also search for this author inPubMed Google Scholar
Corresponding author
Correspondence toDoddy Prayogo.
Rights and permissions
About this article
Cite this article
Cheng, MY., Prayogo, D. Fuzzy adaptive teaching–learning-based optimization for global numerical optimization.Neural Comput & Applic29, 309–327 (2018). https://doi.org/10.1007/s00521-016-2449-7
Received:
Accepted:
Published:
Issue Date:
Share this article
Anyone you share the following link with will be able to read this content:
Sorry, a shareable link is not currently available for this article.
Provided by the Springer Nature SharedIt content-sharing initiative