Movatterモバイル変換


[0]ホーム

URL:


Skip to main content
Springer Nature Link
Log in

On fuzzy isomorphism theorems of hypermodules

  • Original Paper
  • Published:
Soft Computing Aims and scope Submit manuscript

Abstract

We introduce the concept of normal fuzzysubhypermodules ofhypermodules and establish three isomorphism theorems of hypermodules by using normal fuzzy subhypermodules.

This is a preview of subscription content,log in via an institution to check access.

Access this article

Log in via an institution

Subscribe and save

Springer+ Basic
¥17,985 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price includes VAT (Japan)

Instant access to the full article PDF.

Similar content being viewed by others

Explore related subjects

Discover the latest articles, news and stories from top researchers in related subjects.

References

  • Ameri R (2003) On categories of hypergroups and hypermodules. J Discrete Math Sci Cryptogr 6(2-3):121–132

    MATH MathSciNet  Google Scholar 

  • Corsini P (1993) Prolegomena of hypergroup theory, 2nd edn, Aviani editor, pp 1–26

  • Corsini P, Leoreanu V (2003) Applications of hyperstructure theory. Advances in mathematics (Dordrecht). Kluwer, Dordrecht

    Google Scholar 

  • Davvaz B (1999) Remarks on weak hypermodules. Bull Korean Math Soc 36(3):599–608

    MATH MathSciNet  Google Scholar 

  • Davvaz B (2002) Approximations inHv-modules. Taiwanese J Math 6(4):499–506

    MATH MathSciNet  Google Scholar 

  • Davvaz B (2003) A brief survey of the theory ofHv-structures. Algebraic hyperstructures and applications (Alexandroupoli-Orestiada, 2002). Spanidis, Xanthi, pp 39–70

  • Davvaz B (2005) Characterizations of sub-semihypergroups by various triangular norms. Czechoslovak Math J 55(4):923–932

    Article MATH MathSciNet  Google Scholar 

  • Davvaz B, Koushky A (2004) On hyperring of polynomials. Ital J Pure Appl Math 15:205–214

    MATH MathSciNet  Google Scholar 

  • Davvaz B, Poursalavati NS (1999) On polygroup hyperrings and representation of polygroups. J Korean Math Soc 36:1021–1031

    MATH MathSciNet  Google Scholar 

  • Krasner M (1983) A class of hyperring and hyperfields. Int J Math Math Sci 2:307–312

    Article MathSciNet  Google Scholar 

  • Marty F (1934) Sur une generalization de la notation de grouse 8th Congress. Math Scandianaves, Stockholm, pp 45–49

  • Massouros CG (1998) Free and cyclic hypermodules. Ann Math Pura Appl IV Ser 150:153–166

    Article MathSciNet  Google Scholar 

  • Mittas J (1979) Hypergroupes canoniques. Math Balkanica 2:165–179

    MathSciNet  Google Scholar 

  • Neggers J, Jun YB, Kim HS (1999) On L-fuzzy ideals in semirings II. Czechoslovak Math J 49(1):127–133

    Article MATH MathSciNet  Google Scholar 

  • Olson DM, Ward VK (1997) A note on multilicative hyperrings. Ital J Pure Appl Math 1:77–84

    MATH MathSciNet  Google Scholar 

  • Rosenfeld A (1971) Fuzzy groups. J Math Anal Appl 35:512–517

    Article MATH MathSciNet  Google Scholar 

  • Rota R (1996) Hyperaffine planes over hyperrings. Discrete Math 155:215–223

    Article MATH MathSciNet  Google Scholar 

  • Vougiouklis T (1991) The fundamental relation in hyperrings. The general hyperfield. Algebraic hyperstructures and applications (Xanthi, 1990). World Sci. Publishing, Teaneck, pp 203–211

  • Vougiouklis T (1994) Hyperstructures and their representations. Hadronic Press, Palm Harber

    MATH  Google Scholar 

  • Zadeh LA (1965) Fuzzy sets. Inform Control 8:338–353

    Article MATH MathSciNet  Google Scholar 

  • Zhan J (2006) On properties of fuzzy hyperideals in hypernear-rings witht-norms. J Appl Math Comput 20:255–277

    MATH MathSciNet  Google Scholar 

  • Zhan J, Dudek WA (2006) Interval valued intuitionistic (S,T)-fuzzyHv-submodules. Acta Math Sin Engl Ser 22(4): 963–970

    Article MATH MathSciNet  Google Scholar 

  • Zhan J, Davvaz B, Shum KP (2007a) Isomorphism theorems of hypermodules. Acta Math Sin Chin Sers 50(4) (in press)

  • Zhan J, Davvaz B, Shum KP (2007b) A new view of fuzzy hypermodules. Acta Math Sin Engl Ser 23(4) (in press)

Download references

Author information

Authors and Affiliations

  1. Department of Mathematics, Hubei Institute for Nationalities, Enshi, Hubei Province, 445000, People’s Republic of China

    Jianming Zhan

  2. Department of Mathematics, Yazd University, Yazd, Iran

    Bijan Davvaz

  3. Faculty of Science, The Chinese University of Hong Kong, Shatin, Hong Kong (SAR), People’s Republic of China

    K. P. Shum

Authors
  1. Jianming Zhan

    You can also search for this author inPubMed Google Scholar

  2. Bijan Davvaz

    You can also search for this author inPubMed Google Scholar

  3. K. P. Shum

    You can also search for this author inPubMed Google Scholar

Corresponding author

Correspondence toJianming Zhan.

Rights and permissions

About this article

Access this article

Subscribe and save

Springer+ Basic
¥17,985 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price includes VAT (Japan)

Instant access to the full article PDF.

Advertisement


[8]ページ先頭

©2009-2025 Movatter.jp