252Accesses
2 Altmetric
Abstract
Microtia-anotia is a common congenital anomaly. In most cases, the genetic etiology remains unknown. The proper development of outer ear is closely related to cranial neural crest cells. Abnormal DNA recombination perturbing the function of long-range enhancers can lead to genomic disorder. Previously, we identified 4p16.1 duplications in microtia patients and revealed the enhancer function of an evolutionarily conserved region (ECR). Here we recruited additional patients and attempted to identify the minimal overlapping region and regulatory elements. We identified five individuals (F6-F10 probands) with 4p16.1 duplication. The duplications in F3 and F5 were refined to 192.6 kb and 96.1 kb. Precise junction breakpoints in F4 and F6-F10 were detected. The minimal overlapping region (chr4: 8,689,510–8712,827, hg19) contained conserved sequences in addition to ECR. Dual-luciferase assays detected enhancer activity in the TFAP2C binding and 1794 sequence. We present five additional cases of concha-type microtia with 4p16.1 duplication. The minimal overlapping region contains regulatory elements that function as in-cis tissue-specific modules, regulating downstream gene expression during development of cranial neural crest cell.
This is a preview of subscription content,log in via an institution to check access.
Access this article
Subscribe and save
- Starting from 10 chapters or articles per month
- Access and download chapters and articles from more than 300k books and 2,500 journals
- Cancel anytime
Buy Now
Price includes VAT (Japan)
Instant access to the full article PDF.




Similar content being viewed by others

Generation of megabase-scale deletions, inversions and duplications involving theContactin-6 gene in mice by CRISPR/Cas9 technology
Explore related subjects
Discover the latest articles, books and news in related subjects, suggested using machine learning.Availability of data and materials
The datasets used and/or analyzed during the current study are available from the corresponding author on reasonable request.
Abbreviations
- ECR:
Evolutionarily conserved region
- iNCCs:
Induced neural crese cells
- OCACS:
Oculoauricular syndrome
- CFM:
Craniofacial microsomia
- PRS:
Pierre Robin sequence
- CNCC:
Cranial neural crest cell
- TF:
Transcription factors
- WGS:
Whole genome sequencing
- CNVs:
Copy number variation
- SV:
Structural variation
- MAF:
Minor allele frequency
- gnomAD:
Genome Aggregation Database
- aCGH:
Array comparative genomic hybridization
- ONT:
Oxford Nanopore Technology
- qPCR:
Quantitative real-time polymerase chain reaction
- RCN:
Relative copy number
- hNCC:
Human neural crest cell
- iPSC:
Induced pluripotent stem cell
- SD:
Segment duplication
- SINE:
Short interspersed nuclear elements
- LINE:
Long interspersed nuclear elements
- LTR:
Long terminal repeat elements
- DNA:
DNA repeat elements
- ESC:
Embryonic stem cell
- WHS:
Wolf–Hirschhorn syndrome
- LCR:
Low-copy repeats
- NHEJ:
Nonhomologous end ligation
- RBMs:
Replication-based mechanisms
- MMBIR:
Microhomology-mediated break-induced replication
- FoSTeS:
Forehead stalling and template switching
- CRMs:
Cis-regulatory modules
- CNEs:
Conserved non-coding elements
- TAD:
Topologically associated domain
- SNVs:
Single nucleotide variations
References
Adzhubei IA, Schmidt S, Peshkin L, Ramensky VE, Gerasimova A, Bork P, Kondrashov AS, Sunyaev SR (2010) A method and server for predicting damaging missense mutations. Nat Methods 7(4):248–249.https://doi.org/10.1038/nmeth0410-248
Alasti F, Sadeghi A, Sanati MH, Farhadi M, Stollar E, Somers T, Van Camp G (2008) A mutation in HOXA2 is responsible for autosomal-recessive microtia in an Iranian family. Am J Hum Genet 82(4):982–991.https://doi.org/10.1016/j.ajhg.2008.02.015
Balikova I, Martens K, Melotte C, Amyere M, Van Vooren S, Moreau Y, Vetrie D, Fiegler H, Carter NP, Liehr T et al (2008) Autosomal-dominant microtia linked to five tandem copies of a copy-number-variable region at chromosome 4p16. Am J Hum Genet 82(1):181–187.https://doi.org/10.1016/j.ajhg.2007.08.001
Baxi A, Jourdeuil K, Cox TC, Clouthier DE, Tavares ALP (2023) Transcriptomic analysis reveals the role of SIX1 in mouse cranial neural crest patterning and bone development. Dev Dyn 252(10):1303–1315.https://doi.org/10.1002/dvdy.597
Beleza-Meireles A, Clayton-Smith J, Saraiva JM, Tassabehji M (2014) Oculo-auriculo-vertebral spectrum: a review of the literature and genetic update. J Med Genet 51(10):635–645.https://doi.org/10.1136/jmedgenet-2014-102476
Bragagnolo S, Colovati MES, Souza MZ, Dantas AG, FdS MF, Melaragno MI, Perez AB (2018) Clinical and cytogenomic findings in OAV spectrum. Am J Med Genet A 176(3):638–648.https://doi.org/10.1002/ajmg.a.38576
Brown KK, Viana LM, Helwig CC, Artunduaga MA, Quintanilla-Dieck L, Jarrin P, Osorno G, McDonough B, DePalma SR, Eavey RD et al (2013)HOXA2 haploinsufficiency in dominant bilateral microtia and hearing loss. Hum Mutat 34(10):1347–1351.https://doi.org/10.1002/humu.22367
Cao Z, Carey TS, Ganguly A, Wilson CA, Paul S, Knott JG (2015) Transcription factor AP-2gamma induces early Cdx2 expression and represses HIPPO signaling to specify the trophectoderm lineage. Development 142(9):1606–1615.https://doi.org/10.1242/dev.120238
Carvalho CM, Lupski JR (2016) Mechanisms underlying structural variant formation in genomic disorders. Nat Rev Genet 17(4):224–238.https://doi.org/10.1038/nrg.2015.25
Davies AF, Imaizumi K, Mirza G, Stephens RS, Kuroki Y, Matsuno M, Ragoussis J (1998) Further evidence for the involvement of human chromosome 6p24 in the aetiology of orofacial clefting. J Med Genet 35(10):857–861.https://doi.org/10.1136/jmg.35.10.857
Dimitrov B, Balikova I, de Ravel T, Van Esch H, De Smedt M, Baten E, Vermeesch JR, Bradinova I, Simeonov E, Devriendt K et al (2011) 2q31.1 microdeletion syndrome: redefining the associated clinical phenotype. J Med Genet 48(2):98–104.https://doi.org/10.1136/jmg.2010.079491
Ding X, Luo C, Zhou J, Zhong Y, Hu X, Zhou F, Ren K, Gan L, He A, Zhu J et al (2009) The interaction of KCTD1 with transcription factor AP-2alpha inhibits its transactivation. J Cell Biochem 106(2):285–295.https://doi.org/10.1002/jcb.22002
Eckert D, Buhl S, Weber S, Jager R, Schorle H (2005) The AP-2 family of transcription factors. Genome Biol 6(13):246.https://doi.org/10.1186/gb-2005-6-13-246
Gao T, Qian J (2020) EnhancerAtlas 2.0: an updated resource with enhancer annotation in 586 tissue/cell types across nine species. Nucleic Acids Res 48(D1):D58–D64.https://doi.org/10.1093/nar/gkz980
The 1000 Genomes Project Consortium (2015) A global reference for human genetic variation. Nature 526(7571):68–74.https://doi.org/10.1038/nature15393
Gillespie RL, Urquhart J, Lovell SC, Biswas S, Parry NR, Schorderet DF, Lloyd IC, Clayton-Smith J, Black GC (2015) Abrogation of HMX1 function causes rare oculoauricular syndrome associated with congenital cataract, anterior segment dysgenesis, and retinal dystrophy. Invest Ophthalmol Vis Sci 56(2):883–891.https://doi.org/10.1167/iovs.14-15861
Hartzell LD, Chinnadurai S (2018) Microtia and related facial anomalies. Clin Perinatol 45(4):679–697.https://doi.org/10.1016/j.clp.2018.07.007
Hastings PJ, Lupski JR, Rosenberg SM, Ira G (2009) Mechanisms of change in gene copy number. Nat Rev Genet 10(8):551–564.https://doi.org/10.1038/nrg2593
He S, Zhang Z, Sun Y, Ren T, Li W, Zhou X, Michal JJ, Jiang Z, Liu M (2020) Genome-wide association study shows that microtia in Altay sheep is caused by a 76 bp duplication of HMX1. Anim Genet 51(1):132–136.https://doi.org/10.1111/age.12876
Iwanowski PS, Panasiuk B, Van Buggenhout G, Murdolo M, Mysliwiec M, Maas NM, Lattante S, Korniszewski L, Posmyk R, Pilch J et al (2011) Wolf-Hirschhorn syndrome due to pure and translocation forms of monosomy 4p16.1 –>pter. Am J Med Genet A 155A(8):1833–1847.https://doi.org/10.1002/ajmg.a.34005
Karczewski KJ, Francioli LC, Tiao G, Cummings BB, Alfoldi J, Wang Q, Collins RL, Laricchia KM, Ganna A, Birnbaum DP et al (2020) The mutational constraint spectrum quantified from variation in 141,456 humans. Nature 581(7809):434–443.https://doi.org/10.1038/s41586-020-2308-7
Keogh IJ, Troulis MJ, Monroy AA, Eavey RD, Kaban LB (2007) Isolated microtia as a marker for unsuspected hemifacial microsomia. Arch Otolaryngol Head Neck Surg 133(10):997–1001.https://doi.org/10.1001/archotol.133.10.997
Kircher M, Witten DM, Jain P, O’Roak BJ, Cooper GM, Shendure J (2014) A general framework for estimating the relative pathogenicity of human genetic variants. Nat Genet 46(3):310–315.https://doi.org/10.1038/ng.2892
Koch CT, Bruggmann R, Tetens J, Drogemuller C (2013) A non-coding genomic duplication at the HMX1 locus is associated with crop ears in highland cattle. PLoS ONE 8(10):e77841.https://doi.org/10.1371/journal.pone.0077841
Kruszka P, Addissie YA, McGinn DE, Porras AR, Biggs E, Share M, Crowley TB, Chung BH, Mok GT, Mak CC et al (2017) 22q11.2 deletion syndrome in diverse populations. Am J Med Genet A 173(4):879–888.https://doi.org/10.1002/ajmg.a.38199
Kuckenberg P, Kubaczka C, Schorle H (2012) The role of transcription factor Tcfap2c/TFAP2C in trophectoderm development. Reprod Biomed Online 25(1):12–20.https://doi.org/10.1016/j.rbmo.2012.02.015
Kumar P, Henikoff S, Ng PC (2009) Predicting the effects of coding non-synonymous variants on protein function using the SIFT algorithm. Nat Protoc 4(7):1073–1081.https://doi.org/10.1038/nprot.2009.86
Lee JA, Carvalho CM, Lupski JR (2007) A DNA replication mechanism for generating nonrecurrent rearrangements associated with genomic disorders. Cell 131(7):1235–1247.https://doi.org/10.1016/j.cell.2007.11.037
Lek M, Karczewski KJ, Minikel EV, Samocha KE, Banks E, Fennell T, O’Donnell-Luria AH, Ware JS, Hill AJ, Cummings BB et al (2016) Analysis of protein-coding genetic variation in 60,706 humans. Nature 536(7616):285–291.https://doi.org/10.1038/nature19057
Li H (2018) Minimap2: pairwise alignment for nucleotide sequences. Bioinformatics 34(18):3094–3100.https://doi.org/10.1093/bioinformatics/bty191
Li W, Cornell RA (2007) Redundant activities of Tfap2a and Tfap2c are required for neural crest induction and development of other non-neural ectoderm derivatives in zebrafish embryos. Dev Biol 304(1):338–354.https://doi.org/10.1016/j.ydbio.2006.12.042
Li H, Durbin R (2009a) Fast and accurate short read alignment with Burrows-Wheeler transform. Bioinformatics 25(14):1754–1760.https://doi.org/10.1093/bioinformatics/btp324
Li H, Handsaker B, Wysoker A, Fennell T, Ruan J, Homer N, Marth G, Abecasis G, Durbin R, Genome Project Data Processing S (2009b) The sequence alignment/map format and SAMtools. Bioinformatics 25(16):2078–2079.https://doi.org/10.1093/bioinformatics/btp352
Li X, Hu J, Zhang J, Jin Q, Wang DM, Yu J, Zhang Q, Zhang YB (2014) Genome-wide linkage study suggests a susceptibility locus for isolated bilateral microtia on 4p15.32-4p16.2. PLoS ONE 9(7):e101152.https://doi.org/10.1371/journal.pone.0101152
Li C, Zhi D, Wang K, Liu X (2022) Metarnn: differentiating rare pathogenic and rare benign missense SNVs and indels using deep learning. Genome Med 14(1):115.https://doi.org/10.1186/s13073-022-01120-z
Lim F, Solvason JJ, Ryan GE, Le SH, Jindal GA, Steffen P, Jandu SK, Farley EK (2024) Affinity-optimizing enhancer variants disrupt development. Nature 626(7997):151–159.https://doi.org/10.1038/s41586-023-06922-8
Long HK, Osterwalder M, Welsh IC, Hansen K, Davies JOJ, Liu YE, Koska M, Adams AT, Aho R, Arora N et al (2020) Loss of extreme long-range enhancers in human neural crest drives a craniofacial disorder. Cell Stem Cell 27(5):765–783.https://doi.org/10.1016/j.stem.2020.09.001
Lupski JR (1998) Genomic disorders: structural features of the genome can lead to DNA rearrangements and human disease traits. Trends Genet 14(10):417–422
Luquetti DV, Heike CL, Hing AV, Cunningham ML, Cox TC (2012) Microtia: epidemiology and genetics. Am J Med Genet A 158A(1):124–139.https://doi.org/10.1002/ajmg.a.34352
Mansour S, Offiah AC, McDowall S, Sim P, Tolmie J, Hall C (2002) The phenotype of survivors of campomelic dysplasia. J Med Genet 39(8):597–602.https://doi.org/10.1136/jmg.39.8.597
Mao K, Borel C, Ansar M, Jolly A, Makrythanasis P, Froehlich C, Iwaszkiewicz J, Wang B, Xu X, Li Q et al (2023) FOXI3 pathogenic variants cause one form of craniofacial microsomia. Nat Commun 14(1):2026.https://doi.org/10.1038/s41467-023-37703-6
Minoux M, Kratochwil CF, Ducret S, Amin S, Kitazawa T, Kurihara H, Bobola N, Vilain N, Rijli FM (2013) Mouse Hoxa2 mutations provide a model for microtia and auricle duplication. Development 140(21):4386–4397.https://doi.org/10.1242/dev.098046
Nelson AC, Wardle FC (2013) Conserved non-coding elements andcis regulation: actions speak louder than words. Development 140(7):1385–1395.https://doi.org/10.1242/dev.084459
Nguyen JM, Qualmann KJ, Okashah R, Reilly A, Alexeyev MF (2015) 5p deletions: current knowledge and future directions. Am J Med Genet C Semin Med Genet 169(3):224–238.https://doi.org/10.1002/ajmg.c.31444
Ottaviani D, LeCain M, Sheer D (2014) The role of microhomology in genomic structural variation. Trends Genet 30(3):85–94.https://doi.org/10.1016/j.tig.2014.01.001
Pannunzio NR, Li S, Watanabe G, Lieber MR (2014) Non-homologous end joining often uses microhomology: implications for alternative end joining. DNA Repair 17:74–80.https://doi.org/10.1016/j.dnarep.2014.02.006
Pastor WA, Liu W, Chen D, Ho J, Kim R, Hunt TJ, Lukianchikov A, Liu X, Polo JM, Jacobsen SE et al (2018) TFAP2C regulates transcription in human naive pluripotency by opening enhancers. Nat Cell Biol 20(5):553–564.https://doi.org/10.1038/s41556-018-0089-0
Piceci F, Morlino S, Castori M, Buffone E, De Luca A, Grammatico P, Guida V (2017) Identification of a second HOXA2 nonsense mutation in a family with autosomal dominant non-syndromic microtia and distinctive ear morphology. Clin Genet 91(5):774–779.https://doi.org/10.1111/cge.12845
Polychronopoulos D, King JWD, Nash AJ, Tan G, Lenhard B (2017) Conserved non-coding elements: developmental gene regulation meets genome organization. Nucleic Acids Res 45(22):12611–12624.https://doi.org/10.1093/nar/gkx1074
Quiat D, Timberlake AT, Curran JJ, Cunningham ML, McDonough B, Artunduaga MA, DePalma SR, Duenas-Roque MM, Gorham JM, Gustafson JA et al (2023) Damaging variants in FOXI3 cause microtia and craniofacial microsomia. Genet Med 25(1):143–150.https://doi.org/10.1016/j.gim.2022.09.005
Ronde EM, Nolte JW, Kruisinga FH, Maas SM, Lapid O, Ebbens FA, Becking AG, Breugem CC (2023) Evaluating international diagnostic, screening, and monitoring practices for craniofacial microsomia and microtia: a survey study. Cleft Palate Craniofac J 60(9):1118–1127.https://doi.org/10.1177/10556656221093912
Rosin JM, Li W, Cox LL, Rolfe SM, Latorre V, Akiyama JA, Visel A, Kuramoto T, Bobola N, Turner EE et al (2016) A distal 594 bp ECR specifies Hmx1 expression in pinna and lateral facial morphogenesis and is regulated by the Hox-Pbx-Meis complex. Development 143(14):2582–2592.https://doi.org/10.1242/dev.133736
Satoda M, Zhao F, Diaz GA, Burn J, Goodship J, Davidson HR, Pierpont ME, Gelb BD (2000) Mutations in TFAP2B cause Char syndrome, a familial form of patent ductus arteriosus. Nat Genet 25(1):42–46.https://doi.org/10.1038/75578
Seberg HE, Van Otterloo E, Loftus SK, Liu H, Bonde G, Sompallae R, Gildea DE, Santana JF, Manak JR, Pavan WJ et al (2017) TFAP2 paralogs regulate melanocyte differentiation in parallel with MITF. PLoS Genet 13(3):e1006636.https://doi.org/10.1371/journal.pgen.1006636
Sedlazeck FJ, Rescheneder P, Smolka M, Fang H, Nattestad M, von Haeseler A, Schatz MC (2018) Accurate detection of complex structural variations using single-molecule sequencing. Nat Methods 15(6):461–468.https://doi.org/10.1038/s41592-018-0001-7
Shibazaki-Yorozuya R, Nagata S (2019) Preferential associated malformation in patients with anotia and microtia. J Craniofac Surg 30(1):66–70.https://doi.org/10.1097/SCS.0000000000004915
Si N, Meng X, Lu X, Liu Z, Qi Z, Wang L, Li C, Yang M, Zhang Y, Wang C et al (2020a) Duplications involving the long range HMX1 enhancer are associated with human isolated bilateral concha-type microtia. J Transl Med 18(1):244.https://doi.org/10.1186/s12967-020-02409-6
Si N, Meng X, Lu X, Zhao X, Li C, Yang M, Zhang Y, Wang C, Guo P, Zhang X et al (2020b) Identification of loss-of-function HOXA2 mutations in Chinese families with dominant bilateral microtia. Gene 757:144945.https://doi.org/10.1016/j.gene.2020.144945
Stankiewicz P, Lupski JR (2002) Genome architecture, rearrangements and genomic disorders. Trends Genet 18(2):74–82.https://doi.org/10.1016/s0168-9525(02)02592-1
Theveneau E, Mayor R (2012) Neural crest delamination and migration: from epithelium-to-mesenchyme transition to collective cell migration. Dev Biol 366(1):34–54.https://doi.org/10.1016/j.ydbio.2011.12.041
Tian Y, Pesaran T, Chamberlin A, Fenwick RB, Li S, Gau CL, Chao EC, Lu HM, Black MH, Qian D (2019) REVEL and BayesDel outperform other in silico meta-predictors for clinical variant classification. Sci Rep 9(1):12752.https://doi.org/10.1038/s41598-019-49224-8
Timberlake AT, Griffin C, Heike CL, Hing AV, Cunningham ML, Chitayat D, Davis MR, Doust SJ, Drake AF, Duenas-Roque MM et al (2021) Haploinsufficiency of SF3B2 causes craniofacial microsomia. Nat Commun.https://doi.org/10.1038/s41467-021-24852-9
Trainor PA, Krumlauf R (2001) Hox genes, neural crest cells and branchial arch patterning. Curr Opin Cell Biol 13(6):698–705.https://doi.org/10.1016/s0955-0674(00)00273-8
Van Otterloo E, Li H, Jones KL, Williams T (2018) AP-2alpha and AP-2beta cooperatively orchestrate homeobox gene expression during branchial arch patterning. Development.https://doi.org/10.1242/dev.157438
Velagaleti GV, Bien-Willner GA, Northup JK, Lockhart LH, Hawkins JC, Jalal SM, Withers M, Lupski JR, Stankiewicz P (2005) Position effects due to chromosome breakpoints that map approximately 900 kb upstream and approximately 1.3 mb downstream of SOX9 in two patients with campomelic dysplasia. Am J Hum Genet 76(4):652–662.https://doi.org/10.1086/429252
Vissers LE, Stankiewicz P (2012) Microdeletion and microduplication syndromes. Methods Mol Biol 838:29–75.https://doi.org/10.1007/978-1-61779-507-7_2
Wang K, Li M, Hakonarson H (2010) ANNOVAR: functional annotation of genetic variants from high-throughput sequencing data. Nucleic Acids Res 38(16):e164.https://doi.org/10.1093/nar/gkq603
Wei Q, Zhan X, Zhong X, Liu Y, Han Y, Chen W, Li B (2015) A bayesian framework for de novo mutation calling in parents-offspring trios. Bioinformatics 31(9):1375–1381.https://doi.org/10.1093/bioinformatics/btu839
Xu X, Chen Q, Huang Q, Cox TC, Zhu H, Hu J, Han X, Meng Z, Wang B, Liao Z et al (2025) Auricular malformations are driven by copy number variations in a hierarchical enhancer cluster and a dominant enhancer recapitulates human pathogenesis. Nat Commun 16(1):4598.https://doi.org/10.1038/s41467-025-59735-w
Zaugg JB, Sahlen P, Andersson R, Alberich-Jorda M, de Laat W, Deplancke B, Ferrer J, Mandrup S, Natoli G, Plewczynski D et al (2022) Current challenges in understanding the role of enhancers in disease. Nat Struct Mol Biol 29(12):1148–1158.https://doi.org/10.1038/s41594-022-00896-3
Acknowledgements
We thank all participants in the study.
Funding
This work was supported by the Fund of Plastic Surgery Hospital, Chinese Academy of Medical Sciences (No.YS202036) and the Chinese Academy of Medical Sciences Innovation Fund for Medical Sciences (No.2021-I2M-1-052).
Author information
Authors and Affiliations
Plastic Surgery Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100144, China
Xiaolu Meng, Jiawei Du, Bo Pan, Nuo Si & Haiyue Jiang
Laboratory of Clinical Genetics, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100730, China
Zhe Liu
- Xiaolu Meng
Search author on:PubMed Google Scholar
- Jiawei Du
Search author on:PubMed Google Scholar
- Zhe Liu
Search author on:PubMed Google Scholar
- Bo Pan
Search author on:PubMed Google Scholar
- Nuo Si
Search author on:PubMed Google Scholar
- Haiyue Jiang
Search author on:PubMed Google Scholar
Contributions
X.M. and N.S. conceived and designed the study. B.P. and H.J. analyzed and interpreted the clinical data. Z.L. and N.S. designed the custom array and performed the aCGH assay. X.M., J.D. and N.S. performed the genetic analysis. X.M. and J.D. performed the PCR and cellular experiments. X.M. and N.S. wrote the manuscript. B.P. and H.J. contributed to supervision. N.S. and H.J. contributed to funding acquisition. All authors read and approved the final manuscript.
Corresponding authors
Correspondence toNuo Si orHaiyue Jiang.
Ethics declarations
Conflict of interest
The authors declare no competing interests.
Ethical approval and consent to participate
The study was approved by the institutional ethical committee of the Plastic Surgery Hospital of the Chinese Academy of Medical Sciences and Peking Union Medical College (YS202036-2021–07). Written informed consent forms were obtained from affected individuals and legal guardians to collect the blood samples and clinical data. All reported individual data were de-identified.
Consent for publication
Written informed consent forms for publication of individual person’s data were obtained from the individuals or legal guardians.
Additional information
Publisher's Note
Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.
Supplementary Information
Below is the link to the electronic supplementary material.
Rights and permissions
Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.
About this article
Cite this article
Meng, X., Du, J., Liu, Z.et al. Non-recurrent duplications on chromosome 4p16.1 involving cis-regulatory elements affecting neural crest development in patients with isolated bilateral microtia.Hum. Genet.144, 1215–1227 (2025). https://doi.org/10.1007/s00439-025-02788-0
Received:
Accepted:
Published:
Version of record:
Issue date:
Share this article
Anyone you share the following link with will be able to read this content:
Sorry, a shareable link is not currently available for this article.
Provided by the Springer Nature SharedIt content-sharing initiative

