Movatterモバイル変換


[0]ホーム

URL:


Skip to main content
Springer Nature Link
Log in

Velocity-based dynamic crowd simulation by data-driven optimization

  • Original article
  • Published:
The Visual Computer Aims and scope Submit manuscript

Abstract

A crowd simulator that generates realistic crowds with various movement patterns and environmental adaptability is urgently desired but underdeveloped for the applications of video games, urban visualization, autonomous driving, and robot navigation test. In this work, we present a novel velocity-based framework based on data-driven optimization to build dynamic crowd simulation that allows interactive control of global navigation, local collision avoidance, and group formation. An agent’s adaptive decision-making regarding its goals and dynamic local environment is formulated as an optimization problem which is solved by finding an optimal velocity from the real-world crowd velocity dataset. Each component that affects an agent’s movement is integrated into a velocity-based crowd energy metric to measure the similarity between the agent’s required simulated velocity and a given velocity sample. The proposed model can simulate thousands of agents at interactive rates. In addition, the framework is general and scalable to be integrated with various crowd simulation methods to meet the requirements of various kinds of robot navigation test. We validate our approach through simulation experiments in robot navigation scenarios, as well as comparisons to real-world crowd data and popular crowd simulation methods.

This is a preview of subscription content,log in via an institution to check access.

Access this article

Log in via an institution

Subscribe and save

Springer+ Basic
¥17,985 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price includes VAT (Japan)

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14

Similar content being viewed by others

Explore related subjects

Discover the latest articles, news and stories from top researchers in related subjects.

References

  1. Alahi, A., Goel, K., Ramanathan, V., Robicquet, A., Fei-Fei, L., Savarese, S.: Social lstm: Human trajectory prediction in crowded spaces. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 961–971 (2016)

  2. Van den Berg, J., Lin, M., Manocha, D.: Reciprocal velocity obstacles for real-time multi-agent navigation. In: 2008 IEEE International Conference on Robotics and Automation, pp. 1928–1935. IEEE (2008)

  3. Berg, J.v.d., Guy, S.J., Lin, M., Manocha, D.: Reciprocal n-body collision avoidance. In: Robotics research, pp. 3–19. Springer (2011)

  4. Chao, Q., Liu, P., Han, Y., Lin, Y., Li, C., Miao, Q., Jin, X.: A calibrated force-based model for mixed traffic simulation. IEEE transactions on visualization and computer graphics (2021)

  5. Chao, Q., Yu, J., Dai, C., Xu, T., Zhang, L., Wang, C.C., Jin, X.: Steering micro-robotic swarm by dynamic actuating fields. In: 2016 IEEE International Conference on Robotics and Automation (ICRA), pp. 5230–5235. IEEE (2016)

  6. Comaniciu, D., Meer, P.: Mean shift: A robust approach toward feature space analysis. IEEE Transactions on Pattern Analysis and Machine Intelligence24(5), 603–619 (2002)

    Article  Google Scholar 

  7. Dowsland, K.A., Thompson, J.: Simulated annealing. Handbook of Natural Computing pp. 1623–1655 (2012)

  8. Guy, S.J., Curtis, S., Lin, M.C., Manocha, D.: Least-effort trajectories lead to emergent crowd behaviors. Physical Review E85(1), 016,110 (2012)

  9. He, L., Pan, J., Narang, S., Wang, W., Manocha, D.: Dynamic group behaviors for interactive crowd simulation. arXiv preprintarXiv:1602.03623 (2016)

  10. Helbing, D., Farkas, I., Vicsek, T.: Simulating dynamical features of escape panic. Nature407(6803), 487–490 (2000)

    Article  Google Scholar 

  11. Helbing, D., Molnar, P.: Social force model for pedestrian dynamics. Physical Review E51(5), 4282 (1995)

    Article  Google Scholar 

  12. Ju, E., Choi, M.G., Park, M., Lee, J., Lee, K.H., Takahashi, S.: Morphable crowds. ACM Transactions on Graphics29(6), 1–10 (2010)

    Article  Google Scholar 

  13. Karamouzas, I., Overmars, M.: Simulating and evaluating the local behavior of small pedestrian groups. IEEE Transactions on Visualization & Computer Graphics18(3), 394–406 (2012)

    Article  Google Scholar 

  14. Karamouzas, I., Skinner, B., Guy, S.J.: Universal power law governing pedestrian interactions. Physical Review Letters113(23), 238,701 (2014)

  15. Karamouzas, I., Sohre, N., Hu, R., Guy, S.J.: Crowd space: a predictive crowd analysis technique. ACM Transactions on Graphics (TOG)37(6), 1–14 (2018)

    Article  Google Scholar 

  16. Kim, M., Hwang, Y., Hyun, K., Lee, J.: Tiling motion patches. In: Proceedings of the ACM SIGGRAPH/Eurographics Symposium on Computer Animation, pp. 117–126 (2012)

  17. Kim, S., Bera, A., Best, A., Chabra, R., Manocha, D.: Interactive and adaptive data-driven crowd simulation. In: 2016 IEEE Virtual Reality (VR), pp. 29–38. IEEE (2016)

  18. Lee, J., Won, J., Lee, J.: Crowd simulation by deep reinforcement learning. In: Proceedings of the 11th Annual International Conference on Motion, Interaction, and Games, pp. 1–7 (2018)

  19. Lemercier, S., Jelic, A., Kulpa, R., Hua, J., Fehrenbach, J., Degond, P., Appert-Rolland, C., Donikian, S., Pettré, J.: Realistic following behaviors for crowd simulation. Computer Graphics Forum31(2pt2), 489–498 (2012)

  20. Lerner, A., Chrysanthou, Y., Lischinski, D.: Crowds by example. Computer Graphics Forum26(3), 655–664 (2007)

    Article  Google Scholar 

  21. Li, Y., Christie, M., Siret, O., Kulpa, R., Pettré, J.: Cloning crowd motions. In: Proceedings of the ACM SIGGRAPH/Eurographics Symposium on Computer Animation, pp. 201–210. Citeseer (2012)

  22. Moussaïd, M., Perozo, N., Garnier, S., Helbing, D., Theraulaz, G.: The walking behaviour of pedestrian social groups and its impact on crowd dynamics. PloS one5(4), e10,047 (2010)

  23. Musse, S.R., Thalmann, D.: A model of human crowd behavior: Group inter-relationship and collision detection analysis. In: Computer Animation and Simulation’97, pp. 39–51. Springer (1997)

  24. Musse, S.R., Thalmann, D.: Hierarchical model for real time simulation of virtual human crowds. IEEE Transactions on Visualization and Computer Graphics7(2), 152–164 (2001)

    Article  Google Scholar 

  25. Narain, R., Golas, A., Curtis, S., Lin, M.C.: Aggregate dynamics for dense crowd simulation. ACM Transactions on Graphics28(5), 122 (2009)

    Article  Google Scholar 

  26. Ondřej, J., Pettré, J., Olivier, A.H., Donikian, S.: A synthetic-vision based steering approach for crowd simulation. ACM Transactions on Graphics (TOG)29(4), 123 (2010)

    Article  Google Scholar 

  27. Patil, S., Van Den Berg, J., Curtis, S., Lin, M.C., Manocha, D.: Directing crowd simulations using navigation fields. IEEE Transactions on Visualization and Computer Graphics17(2), 244–254 (2010)

    Article  Google Scholar 

  28. Pedica, C., Vilhjálmsson, H.: Social perception and steering for online avatars. In: International Workshop on Intelligent Virtual Agents, pp. 104–116. Springer (2008)

  29. Pelechano, N., Allbeck, J.M., Badler, N.I.: Controlling individual agents in high-density crowd simulation. SCA ’07, p. 99-108. Eurographics Association, Goslar, DEU (2007)

  30. Pellegrini, S., Ess, A., Gool, L.V.: Improving data association by joint modeling of pedestrian trajectories and groupings. In: European conference on computer vision, pp. 452–465. Springer (2010)

  31. Qiu, F., Hu, X.: Modeling group structures in pedestrian crowd simulation. Simulation Modelling Practice and Theory18(2), 190–205 (2010)

    Article  Google Scholar 

  32. Ren, J., Xiang, W., Xiao, Y., Yang, R., Manocha, D., Jin, X.: Heter-sim: Heterogeneous multi-agent systems simulation by interactive data-driven optimization. IEEE Transactions on Visualization and Computer Graphics27(3), 1953–1966 (2021)

    Article  Google Scholar 

  33. Ren, Z., Charalambous, P., Bruneau, J., Peng, Q., Pettré, J.: Group modeling: A unified velocity-based approach. Computer Graphics Forum36(8), 45–56 (2017)

    Article  Google Scholar 

  34. van Toll, W., Grzeskowiak, F., Gandía, A.L., Amirian, J., Berton, F., Bruneau, J., Daniel, B.C., Jovane, A., Pettré, J.: Generalized microscropic crowd simulation using costs in velocity space. In: Symposium on Interactive 3D Graphics and Games, pp. 1–9 (2020)

  35. Treuille, A., Cooper, S., Popović, Z.: Continuum crowds. ACM Transactions on Graphics (TOG)25(3), 1160–1168 (2006)

    Article  Google Scholar 

  36. Vemula, A., Muelling, K., Oh, J.: Social attention: Modeling attention in human crowds. In: 2018 IEEE international Conference on Robotics and Automation (ICRA), pp. 4601–4607. IEEE (2018)

  37. Wolinski, D., Lin, M.C., Pettré, J.: Warpdriver: context-aware probabilistic motion prediction for crowd simulation. ACM Transactions on Graphics (TOG)35(6), 164 (2016)

    Article  Google Scholar 

Download references

Acknowledgements

Xiaogang Jin was supported by the National Natural Science Foundation of China (Grant No. 62036010), the Key Research and Development Program of Zhejiang Province (Grant No. 2020C03096), and the Ningbo Major Special Projects of the “Science and Technology Innovation 2025” (Grant No. 2020Z007).

Author information

Author notes
  1. P. Liu, Q. Chao: Indicates equal contribution.

Authors and Affiliations

  1. State Key Lab of CAD &CG, Zhejiang University, Hangzhou, 310058, China

    Pengfei Liu, Zhongyuan Zhao, Qi Peng & Xiaogang Jin

  2. Harvard Medical School, Boston, USA

    Qianwen Chao & Henwei Huang

  3. Xidian University, Xian, China

    Qiongyan Wang

  4. MoreFun Studios, Tencent, Shenzhen, China

    Milo K. Yip & Elvis S. Liu

Authors
  1. Pengfei Liu

    You can also search for this author inPubMed Google Scholar

  2. Qianwen Chao

    You can also search for this author inPubMed Google Scholar

  3. Henwei Huang

    You can also search for this author inPubMed Google Scholar

  4. Qiongyan Wang

    You can also search for this author inPubMed Google Scholar

  5. Zhongyuan Zhao

    You can also search for this author inPubMed Google Scholar

  6. Qi Peng

    You can also search for this author inPubMed Google Scholar

  7. Milo K. Yip

    You can also search for this author inPubMed Google Scholar

  8. Elvis S. Liu

    You can also search for this author inPubMed Google Scholar

  9. Xiaogang Jin

    You can also search for this author inPubMed Google Scholar

Corresponding author

Correspondence toXiaogang Jin.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Liu, P., Chao, Q., Huang, H.et al. Velocity-based dynamic crowd simulation by data-driven optimization.Vis Comput38, 3499–3512 (2022). https://doi.org/10.1007/s00371-022-02556-5

Download citation

Keywords

Access this article

Subscribe and save

Springer+ Basic
¥17,985 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price includes VAT (Japan)

Instant access to the full article PDF.

Advertisement


[8]ページ先頭

©2009-2025 Movatter.jp