Movatterモバイル変換


[0]ホーム

URL:


Skip to main content

Advertisement

Springer Nature Link
Log in

A gradient-domain-based edge-preserving sharpen filter

  • Original Article
  • Published:
The Visual Computer Aims and scope Submit manuscript

Abstract

As one of the most fundamental operations in computer graphics and computer vision, sharpness enhancement can enhance an image in respect of sharpness characteristics. Unfortunately, the prevalent methods often fail to eliminate image noise, unrealistic details, or incoherent enhancement. In this paper, we propose a new sharpness enhancement approach that can boost the sharpness characteristics of an image effectively with affinity-based edge preserving. Our approach includes three gradient-domain operations: sharpness saliency representation, affinity-based gradient transformation, and gradient-domain image reconstruction. Moreover, we also propose an evaluation method based on sharpness distribution for analyzing all sharpness enhancement approaches in respect of sharpness characteristics. By evaluating the sharpness distribution and comparing the visual appearance, we demonstrate the effectiveness of our sharpness enhancement approach.

This is a preview of subscription content,log in via an institution to check access.

Access this article

Log in via an institution

Subscribe and save

Springer+ Basic
¥17,985 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price includes VAT (Japan)

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

Explore related subjects

Discover the latest articles, news and stories from top researchers in related subjects.

References

  1. Gonzalez, R.C., Woods, R.E.: Digital Image Processing, 2nd edn. Addison-Wesley, Boston (2001)

    Google Scholar 

  2. Inc. Adobe, Systems. Photoshop CS 5, 2010

  3. Elad, M.: On the origin of the bilateral filter and ways to improve it. IEEE Trans. Image Process.11, 1141–1151 (2002)

    Article MathSciNet  Google Scholar 

  4. Farbman, Z., Fattal, R., Lischinski, D., Szeliski, R.: Edge-preserving decompositions for multi-scale tone and detail manipulation. ACM Trans. Graph.27, 67 (2008)

    Article  Google Scholar 

  5. Fattal, R.: Edge-avoiding wavelets and their applications. ACM Trans. Graph.28(3), 1–10 (2009)

    Article  Google Scholar 

  6. Tomasi, C., Manduchi, R.: Bilateral filtering for gray and color images. In: Proceedings of the Sixth International Conference on Computer Vision. ICCV ’98, Washington, DC, USA, pp. 839–846. IEEE Computer Society, Los Alamitos (1998)

    Google Scholar 

  7. He, K., Sun, J., Tang, X.: Guided image filtering. In: Proceedings of the 11th European Conference on Computer vision: Part I, ECCV’10, pp. 1–14. Springer, Berlin (2010)

    Google Scholar 

  8. Paris, S., Hasinoff, S.W., Kautz, J.: Local Laplacian filters: edge-aware image processing with a Laplacian pyramid. In: ACM SIGGRAPH, SIGGRAPH ’11, New York, NY, USA, 2011. ACM, New York (2011)

    Google Scholar 

  9. Zeng, X., Chen, W., Peng, Q.: A novel variational image model: towards a unified approach to image editing. J. Comput. Sci. Technol. 224–231 (2006)

  10. Bhat, P., Curless, B., Cohen, M., Zitnick, C.L.: Fourier analysis of the 2d screened Poisson equation for gradient domain problems. In: Proceedings of the 10th European Conference on Computer Vision: Part II, pp. 114–128. Springer, Berlin (2008)

    Google Scholar 

  11. Bhat, P., Zitnick, C.L., Cohen, M., Curless, B.: Gradientshop: a gradient-domain optimization framework for image and video filtering. ACM Trans. Graph.29, 10:1–10:14 (2010)

    Article  Google Scholar 

  12. Fattal, R., Lischinski, D., Werman, M.: Gradient domain high dynamic range compression. ACM Trans. Graph.21, 249–256 (2002)

    Article  Google Scholar 

  13. Pérez, P., Gangnet, M., Blake, A.: Poisson image editing. ACM Trans. Graph.22, 313–318 (2003)

    Article  Google Scholar 

  14. Levin, A., Zomet, A., Peleg, S., Weiss, Y.: Seamless image stitching in the gradient domain. In: Eighth European Conference on Computer Vision (ECCV 2004), pp. 377–389. Springer, Berlin (2003)

    Google Scholar 

  15. Levin, A., Lischinski, D., Weiss, Y.: Colorization using optimization. ACM Trans. Graph.23, 689–694 (2004)

    Article  Google Scholar 

  16. Lischinski, D., Farbman, Z., Uyttendaele, M., Szeliski, R.: Interactive local adjustment of tonal values. ACM Trans. Graph.25, 646–653 (2006)

    Article  Google Scholar 

  17. Orzan, A., Bousseau, A., Barla, P., Thollot, J.: Structure-preserving manipulation of photographs. In: Proceedings of the 5th International Symposium on Non-photorealistic Animation and Rendering, NPAR ’07, New York, NY, USA, 2007, pp. 103–110. ACM, New York (2007)

    Chapter  Google Scholar 

  18. Agrawal, A., Raskar, R., Nayar, S.K., Li, Y.: Removing photography artifacts using gradient projection and flash-exposure sampling. ACM Trans. Graph.24, 828–835 (2005)

    Article  Google Scholar 

  19. Agrawal, A., Raskar, R., Chellappa, R.: Edge suppression by gradient field transformation using cross-projection tensors. In: Proceedings of the 2006 IEEE Computer Society Conference on Computer Vision and Pattern Recognition—vol. 2, CVPR ’06, Washington, DC, USA, 2006, pp. 2301–2308. IEEE Computer Society, Los Alamitos (2006)

    Google Scholar 

  20. Agrawal, A., Raskar, R.: What is the range of surface reconstructions from a gradient field. In: ECCV, pp. 578–591. Springer, Berlin (2006)

    Google Scholar 

  21. Ding, M., Tong, R.f.: Content-aware copying and pasting in images. Vis. Comput.26(6–8), 721–729 (2010)

    Article  Google Scholar 

  22. Xie, Z.-F., Shen, Y., Ma, L., Chen, Z.: Seamless video composition using optimized mean-value cloning. Vis. Comput.26(6–8), 1123–1134 (2010)

    Article  Google Scholar 

  23. Zhang, Y., Tong, R.: Environment-sensitive cloning in images. Vis. Comput.27, 739–748 (2011)

    Article  Google Scholar 

  24. Fattal, R.: Image upsampling via imposed edge statistics. ACM Trans. Graph.26(3), 95 (2007)

    Article  Google Scholar 

  25. Sun, J., Xu, Z., Shum, H.-Y.: Image super-resolution using gradient profile prior. In: IEEE Conference on Computer Vision and Pattern Recognition, pp. 1–8 (2008)

    Google Scholar 

  26. Levin, A., Lischinski, D., Weiss, Y.: A closed-form solution to natural image matting. IEEE Trans. Pattern Anal. Mach. Intell.30, 228–242 (2008)

    Article  Google Scholar 

  27. He, K., Sun, J., Tang, X.: Single image haze removal using dark channel prior. In: IEEE Computer Society Conference on Computer Vision and Pattern Recognition, pp. 1956–1963 (2009)

    Google Scholar 

  28. Boykov, Y.Y., Jolly, M.P.: Interactive graph cuts for optimal boundary & region segmentation of objects in N-D images. In: 8th IEEE International Conference on Computer Vision, vol. 1, pp. 105–112 (2001)

    Google Scholar 

  29. Rother, C., Kolmogorov, V., Blake, A.: Grabcut: interactive foreground extraction using iterated graph cuts. ACM Trans. Graph.23, 309–314 (2004)

    Article  Google Scholar 

  30. Wang, J., Cohen, M.F.: Optimized color sampling for robust matting. In: IEEE Conference on Computer Vision and Pattern Recognition, 2007. CVPR ’07, pp. 1–8 (2007)

    Google Scholar 

  31. He, K., Sun, J., Tang, X.: Fast matting using large kernel matting Laplacian matrices. In: IEEE Conference on Computer Vision and Pattern Recognition (2010)

    Google Scholar 

Download references

Acknowledgements

We would like to thank the anonymous reviewers for their valuable comments. This work was supported by the National Basic Research Project of China (No. 2011CB302203), the National Natural Science Foundation of China (No. 61073089, No. 61133009), the Innovation Program of the Science and Technology Commission of Shanghai Municipality (No. 10511501200), and a SRG grant from City University of Hong Kong (No. 7002664).

Author information

Authors and Affiliations

  1. Shanghai Jiaotong University, Shanghai, China

    Zhi-Feng Xie, Yan Gui, Min-Gang Chen & Li-Zhuang Ma

  2. City University of Hong Kong, Kowloon, Hong Kong

    Rynson W. H. Lau

Authors
  1. Zhi-Feng Xie

    You can also search for this author inPubMed Google Scholar

  2. Rynson W. H. Lau

    You can also search for this author inPubMed Google Scholar

  3. Yan Gui

    You can also search for this author inPubMed Google Scholar

  4. Min-Gang Chen

    You can also search for this author inPubMed Google Scholar

  5. Li-Zhuang Ma

    You can also search for this author inPubMed Google Scholar

Corresponding author

Correspondence toZhi-Feng Xie.

Rights and permissions

About this article

Access this article

Subscribe and save

Springer+ Basic
¥17,985 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price includes VAT (Japan)

Instant access to the full article PDF.

Advertisement


[8]ページ先頭

©2009-2025 Movatter.jp