Abstract
Finding good transfer functions for rendering medical volumes is difficult, non-intuitive, and time-consuming. We introduce a clustering-based framework for the automatic generation of transfer functions for volumetric data. The system first applies mean shift clustering to oversegment the volume boundaries according to their low-high (LH) values and their spatial coordinates, and then uses hierarchical clustering to group similar voxels. A transfer function is then automatically generated for each cluster such that the number of occlusions is reduced. The framework also allows for semi-automatic operation, where the user can vary the hierarchical clustering results or the transfer functions generated. The system improves the efficiency and effectiveness of visualizing medical images and is suitable for medical imaging applications.
This is a preview of subscription content,log in via an institution to check access.
Access this article
Subscribe and save
- Get 10 units per month
- Download Article/Chapter or eBook
- 1 Unit = 1 Article or 1 Chapter
- Cancel anytime
Buy Now
Price includes VAT (Japan)
Instant access to the full article PDF.
Similar content being viewed by others
Explore related subjects
Discover the latest articles, news and stories from top researchers in related subjects.References
Bajaj, C.L., Pascucci, V., Schikore, D.R.: The contour spectrum. In: Proceedings of IEEE Visualization, pp. 167–173 (1997)
Chan, M.Y., Wu, Y., Mak, W.H., Chen, W., Qu, H.: Perception-based transparency optimization for direct volume rendering. IEEE Trans. Vis. Comput. Graph.15(6), 1077–2626 (2009)
Correa, C.D., Ma, K.L.: Size-based transfer functions: a new volume exploration technique. IEEE Trans. Vis. Comput. Graph.14(6), 1380–1387 (2008)
Correa, C.D., Ma, K.L.: The occlusion spectrum for volume visualization and classification. IEEE Trans. Vis. Comput. Graph.15(6), 1465–1472 (2009)
Correa, C.D., Ma, K.L.: Visibility driven transfer functions. In: IEEE Pacific Visualization Symposium, pp. 177–184 (2009)
Correa, C.D., Ma, K.L.: Visibility histograms and visibility-driven transfer functions. IEEE Trans. Vis. Comput. Graph.17(2), 1077–2626 (2010)
Duda, R.O., Ehart, P., Stork, D.G.: Pattern Classification, 2nd edn. Wiley-Interscience, New York (2001)
Fukunaga, K., Larry, H.D.: The estimation of the gradient of a density function, with applications in pattern recognition. IEEE Trans. Inf. Theory21(1), 32–40 (1975)
Hadwiger, M., Fritz, L., Rezk-Salama, C., Höllt, T., Geier, G., Pabel, T.: Interactive volume exploration for feature detection and quantification in industrial CT data. IEEE Trans. Vis. Comput. Graph.14(6), 1507–1514 (2008)
Hladuvka, J., König, A., Gröller, E.: Curvature-based transfer functions for direct volume rendering. In: Proceedings of Spring Conference on Computer Graphics, pp. 58–65 (2000)
Hong, D., Ning, G., Zhao, T., Zhang, M., Zheng, X.: Method of normal estimation based on approximation for visualization. J. Electron. Imaging12(3), 470–477 (2003)
Huang, R., Ma, K.L.: RGVis: region growing based techniques for volume visualization. In: Proceedings of Pacific Conference on Computer Graphics and Applications, pp. 355–363 (2003)
Kindlmann, G.: Transfer functions in direct volume rendering: design, interface, interaction. In: Course Note of ACM SIGGRAPH (2002)
Kindlmann, G., Durkin, J.W.: Semi-automatic generation of transfer functions for direct volume rendering. In: Proceedings of IEEE Symposium on Volume Visualization, pp. 79–86 (1998)
Kindlmann, G., Whitaker, R., Tasdizen, T., Möller, T.: Curvature-based transfer functions for direct volume rendering: methods and applications. In: Proceedings of IEEE Symposium on Volume Visualization, pp. 513–520 (2003)
Kniss, J., Kindlmann, G., Hansen, C.: Interactive volume rendering using multi-dimensional transfer functions and direct manipulation widgets. In: Proceedings of IEEE Symposium on Volume Visualization, pp. 255–262 (2001)
Kniss, J., Kindlmann, G., Hansen, C.: Multi-dimensional transfer functions for interactive volume rendering. IEEE Trans. Vis. Comput. Graph.8(3), 270–285 (2002)
Lum, E.B., Ma, K.L.: Lighting transfer functions using gradient aligned sampling. In: Proceedings of IEEE Visualization, pp. 289–296 (2004)
Lundström, C., Ljung, P., Ynnerman, A.: Extending and simplifying transfer function design in medical volume rendering using local histograms. In: Proceedings of IEEE/Eurographics Symposium on Visualization, pp. 263–270 (2005)
Lundström, C., Ljung, P., Ynnerman, A.: Local histograms for design of transfer functions in direct volume rendering. IEEE Trans. Vis. Comput. Graph.12(6), 1570–1579 (2006)
Lundström, C., Ynnerman, A., Ljung, P., Persson, A., Knutsson, H.: Theα-histogram: using spatial coherence to enhance histograms and transfer function design. In: Proceedings of IEEE/Eurographics Symposium on Visualization, pp. 227–234 (2006)
Maciejewski, R., Chen, W., Woo, I., Ebert, D.S.: Structuring feature space—a non-parametric method for volumetric transfer function generation. IEEE Trans. Vis. Comput. Graph.15(6), 1473–1480 (2009)
de Moura Pinto, F., Freitas, C.M.D.S.: Design of multi-dimensional transfer functions using dimensional reduction. In: Proceedings of IEEE/Eurographics Symposium on Visualization, pp. 131–138 (2007)
Nguyen, B.P., Tay, W.L., Chui, C.K., Ong, S.H.: Automatic transfer function design for volumetric data visualization using clustering on LH space. In: Proceedings of Computer Graphics International (2011)
Pekar, V., Wiemker, R., Hempel, D.: Fast detection of meaningful isosurfaces for volume data visualization. In: Proceedings of IEEE Visualization, pp. 223–230 (2001)
Praßni, J.S., Ropinski, T., Hinrichs, K.H.: Efficient boundary detection and transfer function generation in direct volume rendering. In: Proceedings of the 14th International Fall Workshop on Vision, Modeling, and Visualization (VMV09), pp. 285–294 (2009)
Röttger, S., Bauer, M., Stamminger, M.: Spatialized transfer functions. In: Proceedings of IEEE/Eurographics Symposium on Visualization, pp. 271–278 (2005)
Tappenbeck, A., Preim, B., Dicken, V.: Distance-based transfer function design: specification methods and applications. In: Proceedings of Simulation und Visualisierung, pp. 259–274 (2006)
Teistler, M., Breiman, R.S., Liong, S.M., Ho, L.Y., Shahab, A., Nowinski, W.L.: Interactive definition of transfer functions in volume rendering based on image markers. Int. J. Comput. Assisted Radiol. Surg.2(1), 55–64 (2007)
Tzeng, F.Y., Ma, K.L.: A cluster-space visual interface for arbitrary dimensional classification of volume data. In: Proceedings of IEEE/Eurographics Symposium on Visualization, pp. 17–24 (2004)
Tzeng, F.Y., Lum, E.B., Ma, K.L.: A novel interface for higher-dimensional classification of volume data. In: Proceedings of IEEE Visualization, pp. 505–512 (2003)
Tzeng, F.Y., Lum, E.B., Ma, K.L.: An intelligent system approach to higher-dimensional classification of volume data. IEEE Trans. Vis. Comput. Graph.11(3), 273–284 (2005)
Šereda, P., Bartroli, A.V., Serlie, I.W.O., Gerritsen, F.A.: Visualization of boundaries in volumetric data sets using LH histograms. IEEE Trans. Vis. Comput. Graph.12(2), 208–218 (2006)
Šereda, P., Vilanova, A., Gerritsen, F.A.: Automating transfer function design for volume rendering using hierarchical clustering of material boundaries. In: Proceedings of IEEE/Eurographics Symposium on Visualization, pp. 243–250 (2006)
Wesarg, S., Kirschner, M.: Structure size enhanced histogram. In: Brauer, W., Meinzer, H.P., Deserno, T.M., Handels, H., Tolxdorff, T. (eds.) Bildverarbeitung für die Medizin 2009. Informatik aktuell, pp. 16–20. Springer, Berlin (2009)
Wesarg, S., Kirschner, M., Khan, M.F.: 2D histogram based volume visualization: combining intensity and size of anatomical structures. Int. J. Comput. Assist. Radiol. Surg.5(6), 655–666 (2010)
Zhou, F., Zhao, Y., Ma, K.: Parallel mean shift for interactive volume segmentation. Mach. Learn. Med. Imaging, 67–75 (2010)
Author information
Authors and Affiliations
Department of Electrical and Computer Engineering, National University of Singapore, Singapore, Singapore
Binh P. Nguyen & Wei-Liang Tay
Department of Electrical and Computer Engineering, and Division of Bioengineering, National University of Singapore, Singapore, Singapore
Sim-Heng Ong
Department of Mechanical Engineering, National University of Singapore, Singapore, Singapore
Chee-Kong Chui
- Binh P. Nguyen
You can also search for this author inPubMed Google Scholar
- Wei-Liang Tay
You can also search for this author inPubMed Google Scholar
- Chee-Kong Chui
You can also search for this author inPubMed Google Scholar
- Sim-Heng Ong
You can also search for this author inPubMed Google Scholar
Corresponding author
Correspondence toBinh P. Nguyen.
Rights and permissions
About this article
Cite this article
Nguyen, B.P., Tay, WL., Chui, CK.et al. A clustering-based system to automate transfer function design for medical image visualization.Vis Comput28, 181–191 (2012). https://doi.org/10.1007/s00371-011-0634-3
Published:
Issue Date:
Share this article
Anyone you share the following link with will be able to read this content:
Sorry, a shareable link is not currently available for this article.
Provided by the Springer Nature SharedIt content-sharing initiative