Movatterモバイル変換


[0]ホーム

URL:


Skip to main content
Springer Nature Link
Log in

Evolution of Dispersal in Advective Patchy Environments

  • Published:
Journal of Nonlinear Science Aims and scope Submit manuscript

Abstract

We study a two-species competition model in a patchy advective environment, where the species are subject to both directional drift and undirectional random dispersal between patches and there are losses of individuals in the downstream end (e.g., due to the flow into a lake or ocean). The two competing species are assumed to have the same growth rates but different advection and random dispersal rates. We focus our studies on the properties of an associated eigenvalue problem which characterizes the extinction/persistence dynamics of the underlying patch population model. We also derive conditions on the advection and random dispersal rates under which a mutant species can or cannot invade the resident species.

This is a preview of subscription content,log in via an institution to check access.

Access this article

Log in via an institution

Subscribe and save

Springer+ Basic
¥17,985 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price includes VAT (Japan)

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

Data Availability

The datasets generated during and/or analyzed during the current study are available from the corresponding author on reasonable request.

References

  • Altenberg, L.: Resolvent positive linear operators exhibit the reduction phenomenon. Proc. Natl. Acad. Sci. USA109(10), 3705–3710 (2012)

    MathSciNet MATH  Google Scholar 

  • Apaloo, J., Brown, J.S., Vincent, T.L.: Evolutionary game theory: ESS, convergence stability, and NIS. Evol. Ecol. Res.11, 489–515 (2009)

    Google Scholar 

  • Berman, A., Plemmons, R.J.: Nonnegative Matrices in the Mathematical Sciences, Volume 9 of Classics in Applied Mathematics. Society for Industrial and Applied Mathematics (SIAM), Philadelphia (1994)

  • Cantrell, R.S., Cosner, C.: Spatial Ecology via Reaction–Diffusion Equations. Wiley, New York (2004)

    MATH  Google Scholar 

  • Cantrell, R.S., Cosner, C., Deangelis, D.L., Padron, V.: The ideal free distribution as an evolutionarily stable strategy. J. Biol. Dyn.1(3), 249–271 (2007)

    MathSciNet MATH  Google Scholar 

  • Cantrell, R.S., Cosner, C., Lou, Y.: Evolutionary stability of ideal free dispersal strategies in patchy environments. J. Math. Biol.65(5), 943–965 (2012)

    MathSciNet MATH  Google Scholar 

  • Cantrell, R.S., Cosner, C., Lou, Y., Schreiber, S.J.: Evolution of natal dispersal in spatially heterogeneous environments. Math. Biosci.283, 136–144 (2017)

    MathSciNet MATH  Google Scholar 

  • Chen, S., Shi, J., Shuai, Z., Wu, Y.: Global dynamics of a Lotka–Volterra competition patch model. Nonlinearity35(2), 817–842 (2022a)

  • Chen, S., Shi, J., Shuai, Z., Wu, Y.: Two novel proofs of spectral monotonicity of perturbed essentially nonnegative matrices with applications in population dynamics. SIAM J. Appl. Math.82(2), 654–676 (2022b)

  • Cheng, C.-Y., Lin, K.-H., Shih, C.-W.: Coexistence and extinction for two competing species in patchy environments. Math. Biosci. Eng.16(2), 909–946 (2019)

    MathSciNet MATH  Google Scholar 

  • Cosner, C.: Variability, vagueness and comparison methods for ecological models. Bull. Math. Biol.58(2), 207–246 (1996)

    MATH  Google Scholar 

  • DeAngelis, D.L., Ni, W.-M., Zhang, B.: Dispersal and spatial heterogeneity: single species. J. Math. Biol.72(1), 239–254 (2016)

    MathSciNet MATH  Google Scholar 

  • Dieckmann, U., Law, R.: The dynamical theory of coevolution: a derivation from stochastic ecological processes. J. Math. Biol.34(5), 579–612 (1996)

    MathSciNet MATH  Google Scholar 

  • Dockery, J., Hutson, V., Mischaikow, K., Pernarowski, M.: The evolution of slow dispersal rates: a reaction diffusion model. J. Math. Biol.37(1), 61–83 (1998)

    MathSciNet MATH  Google Scholar 

  • Geritz, S., Kisdi, E., Mesze, G., Metz, J.A.J.: Evolutionarily singular strategies and the adaptive growth and branching of the evolutionary tree. Evol. Biol.12(1), 35–57 (1998)

    Google Scholar 

  • Gourley, S.A., Kuang, Y.: Two-species competition with high dispersal: the winning strategy. Math. Biosci. Eng.2(2), 345–362 (2005)

    MathSciNet MATH  Google Scholar 

  • Hamida, Y.: The Evolution of Dispersal for the Case of Two Patches and Two-Species with Travel Loss. Master’s thesis, The Ohio State University (2017)

  • Hastings, A.: Can spatial variation alone lead to selection for dispersal? Theor. Popul. Biol.24(3), 244–251 (1983)

    MathSciNet MATH  Google Scholar 

  • Hess, P.: Periodic-Parabolic Boundary Value Problems and Positivity. Pitman Research Notes in Mathematics Series, vol. 247. Longman Scientific & Technical, Harlow (1991)

  • Hsu, S.B., Smith, H.L., Waltman, P.: Competitive exclusion and coexistence for competitive systems on ordered Banach spaces. Trans. Am. Math. Soc.348(10), 4083–4094 (1996)

    MathSciNet MATH  Google Scholar 

  • Huang, Q.-H., Jin, Y., Lewis, M.A.:\(R_0\) analysis of a Benthic-drift model for a stream population. SIAM J. Appl. Dyn. Syst.15(1), 287–321 (2016)

    MathSciNet MATH  Google Scholar 

  • Jiang, H., Lam, K.-Y., Lou, Y.: Are two-patch models sufficient? The evolution of dispersal and topology of river network modules. Bull. Math. Biol.82(10), Paper No. 131, 42 (2020)

  • Jiang, H., Lam, K.-Y., Lou, Y.: Three-patch models for the evolution of dispersal in advective environments: varying drift and network topology. Bull. Math. Biol.83(10), 1–46 (2021)

    MathSciNet MATH  Google Scholar 

  • Jin, Y., Lewis, M.A.: Seasonal influences on population spread and persistence in streams: critical domain size. SIAM J. Appl. Math.71(4), 1241–1262 (2011)

    MathSciNet MATH  Google Scholar 

  • Keitt, T.H., Lewis, M.A., Holt, R.D.: Allee effects, invasion pinning, and species’ borders. Am. Nat.157(2), 203–216 (2001)

    Google Scholar 

  • Kirkland, S., Li, C.-K., Schreiber, S.J.: On the evolution of dispersal in patchy landscapes. SIAM J. Appl. Math.66(4), 1366–1382 (2006)

    MathSciNet MATH  Google Scholar 

  • Lam, K.-Y., Lou, Y.: Evolutionarily stable and convergent stable strategies in reaction–diffusion models for conditional dispersal. Bull. Math. Biol.76(2), 261–291 (2014)

    MathSciNet MATH  Google Scholar 

  • Lam, K.-Y., Munther, D.: A remark on the global dynamics of competitive systems on ordered Banach spaces. Proc. Am. Math. Soc.144(3), 1153–1159 (2016)

    MathSciNet MATH  Google Scholar 

  • Lam, K.Y., Lou, Y., Lutscher, F.: Evolution of dispersal in closed advective environments. J. Biol. Dyn.9(suppl. 1), 188–212 (2015)

    MathSciNet MATH  Google Scholar 

  • Lam, K.Y., Lou, Y., Lutscher, F.: The emergence of range limits in advective environments. SIAM J. Appl. Math.76(2), 641–662 (2016)

    MathSciNet MATH  Google Scholar 

  • Levin, S.A.: Population dynamic models in heterogeneous environments. Annu. Rev. Ecol. Syst.66, 287–310 (1976)

    Google Scholar 

  • Levin, S.A., Cohen, D., Hastings, A.: Dispersal strategies in patchy environments. Theor. Popul. Biol.26(2), 165–191 (1984)

    MathSciNet MATH  Google Scholar 

  • Li, C.-K., Schneider, H.: Applications of Perron–Frobenius theory to population dynamics. J. Math. Biol.44(5), 450–462 (2002)

    MathSciNet MATH  Google Scholar 

  • Li, M.Y., Shuai, Z.: Global-stability problem for coupled systems of differential equations on networks. J. Differ. Equ.248(1), 1–20 (2010)

    MathSciNet MATH  Google Scholar 

  • Lin, K.-H., Lou, Y., Shih, C.-W., Tsai, T.-H.: Global dynamics for two-species competition in patchy environment. Math. Biosci. Eng.11(4), 947–970 (2014)

    MathSciNet MATH  Google Scholar 

  • Lou, Y.: Ideal free distribution in two patches. J. Nonlinear Model. Anal.2, 151–167 (2019)

    Google Scholar 

  • Lou, Y., Lutscher, F.: Evolution of dispersal in open advective environments. J. Math. Biol.69(6–7), 1319–1342 (2014)

    MathSciNet MATH  Google Scholar 

  • Lou, Y., Zhou, P.: Evolution of dispersal in advective homogeneous environment: the effect of boundary conditions. J. Differ. Equ.259(1), 141–171 (2015)

    MathSciNet MATH  Google Scholar 

  • Lou, Y., Xiao, D.-M., Zhou, P.: Qualitative analysis for a Lotka–Volterra competition system in advective homogeneous environment. Discrete Contin. Dyn. Syst.36(2), 953–969 (2016)

    MathSciNet MATH  Google Scholar 

  • Lou, Y., Nie, H., Wang, Y.: Coexistence and bistability of a competition model in open advective environments. Math. Biosci.306, 10–19 (2018)

  • Lu, Z.Y., Takeuchi, Y.: Global asymptotic behavior in single-species discrete diffusion systems. J. Math. Biol.32(1), 67–77 (1993)

    MathSciNet MATH  Google Scholar 

  • Lutscher, F., Pachepsky, E., Lewis, M.A.: The effect of dispersal patterns on stream populations. SIAM Rev.47(4), 749–772 (2005). ((electronic))

    MathSciNet MATH  Google Scholar 

  • Lutscher, F., Lewis, M.A., McCauley, E.: Effects of heterogeneity on spread and persistence in rivers. Bull. Math. Biol.68(8), 2129–2160 (2006)

    MathSciNet MATH  Google Scholar 

  • Lutscher, F., McCauley, E., Lewis, M.A.: Spatial patterns and coexistence mechanisms in systems with unidirectional flow. Theor. Popul. Biol.71(3), 267–277 (2007)

    MATH  Google Scholar 

  • Ma, L., Tang, D.: Evolution of dispersal in advective homogeneous environments. Discrete Contin. Dyn. Syst.40(10), 5815–5830 (2020)

    MathSciNet MATH  Google Scholar 

  • McPeek, M.A., Holt, R.D.: The evolution of dispersal in spatially and temporally varying environments. Am. Nat.140(6), 1010–1027 (1992)

    Google Scholar 

  • Noble, L.: Evolution of Dispersal in Patchy Habitats. PhD thesis, The Ohio State University (2015)

  • Owen, M.R., Lewis, M.A.: How predation can slow, stop or reverse a prey invasion. Bull. Math. Biol.63(4), 655–684 (2001)

    MathSciNet MATH  Google Scholar 

  • Smith, H.L.: Monotone Dynamical Systems: An Introduction to the Theory of Competitive and Cooperative Systems. American Mathematical Society, Providence (1995)

    MATH  Google Scholar 

  • Speirs, D.C., Gurney, W.S.C.: Population persistence in rivers and estuaries. Ecology82(5), 1219–1237 (2001)

    Google Scholar 

  • Vasilyeva, O., Lutscher, F.: Population dynamics in rivers: analysis of steady states. Can. Appl. Math. Q.18(4), 439–469 (2010)

    MathSciNet MATH  Google Scholar 

  • Vasilyeva, O., Lutscher, F.: How flow speed alters competitive outcome in advective environments. Bull. Math. Biol.74(12), 2935–2958 (2012)

    MathSciNet MATH  Google Scholar 

  • Xiang, J.-J., Fang, Y.: Evolutionarily stable dispersal strategies in a two-patch advective environment. Discrete Contin. Dyn. Syst. Ser. B24(4), 1875–1887 (2019)

    MathSciNet MATH  Google Scholar 

  • Yan, X., Nie, H., Zhou, P.: On a competition–diffusion–advection system from river ecology: mathematical analysis and numerical study. SIAM J. Appl. Dyn. Syst.21(1), 438–469 (2022)

    MathSciNet MATH  Google Scholar 

  • Zhao, X.-Q., Zhou, P.: On a Lotka–Volterra competition model: the effects of advection and spatial variation. Calc. Var. Part. Differ. Equ.55(4), Art. 73, 25 (2016)

  • Zhou, P.: On a Lotka–Volterra competition system: diffusion vs advection. Calc. Var. Part. Differ. Equ.55(6), Art. 137, 29 (2016)

  • Zhou, P., Zhao, X.-Q.: Global dynamics of a two species competition model in open stream environments. J. Dyn. Differ. Equ.30(2), 613–636 (2018)

    MathSciNet MATH  Google Scholar 

Download references

Acknowledgements

The authors thank two anonymous reviewers for their insightful suggestions that led to improvement of the paper.

Author information

Authors and Affiliations

  1. Department of Mathematics, Harbin Institute of Technology, Weihai, 264209, Shandong, People’s Republic of China

    Shanshan Chen

  2. Department of Mathematics, William & Mary, Williamsburg, VA, 23187-8795, USA

    Junping Shi

  3. Department of Mathematics, University of Central Florida, Orlando, FL, 32816, USA

    Zhisheng Shuai

  4. Department of Mathematics, Middle Tennessee State University, Murfreesboro, TN, 37132, USA

    Yixiang Wu

Authors
  1. Shanshan Chen

    You can also search for this author inPubMed Google Scholar

  2. Junping Shi

    You can also search for this author inPubMed Google Scholar

  3. Zhisheng Shuai

    You can also search for this author inPubMed Google Scholar

  4. Yixiang Wu

    You can also search for this author inPubMed Google Scholar

Corresponding author

Correspondence toJunping Shi.

Ethics declarations

Conflict of interest

The authors declare they have no conflict of interest.

Additional information

Communicated by Paul Newton.

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

S. Chen is supported by National Natural Science Foundation of China (Nos. 12171117, 11771109) and Shandong Provincial Natural Science Foundation of China (No. ZR2020YQ01), J. Shi is supported by US-NSF Grant DMS-1715651 and DMS-1853598, and Z. Shuai is supported by US-NSF Grant DMS-1716445.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Access this article

Subscribe and save

Springer+ Basic
¥17,985 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price includes VAT (Japan)

Instant access to the full article PDF.

Advertisement


[8]ページ先頭

©2009-2025 Movatter.jp