738Accesses
56Citations
Abstract
Based on solving the Lenard recursion equations and the zero-curvature equation, we derive the Kaup–Kupershmidt hierarchy associated with a 3×3 matrix spectral problem. Resorting to the characteristic polynomial of the Lax matrix for the Kaup–Kupershmidt hierarchy, we introduce a trigonal curve\(\mathcal {K}_{m-1}\) and present the corresponding Baker–Akhiezer function and meromorphic function on it. The Abel map is introduced to straighten out the Kaup–Kupershmidt flows. With the aid of the properties of the Baker–Akhiezer function and the meromorphic function and their asymptotic expansions, we arrive at their explicit Riemann theta function representations. The Riemann–Jacobi inversion problem is achieved by comparing the asymptotic expansion of the Baker–Akhiezer function and its Riemann theta function representation, from which quasi-periodic solutions of the entire Kaup–Kupershmidt hierarchy are obtained in terms of the Riemann theta functions.
This is a preview of subscription content,log in via an institution to check access.
Access this article
Subscribe and save
- Get 10 units per month
- Download Article/Chapter or eBook
- 1 Unit = 1 Article or 1 Chapter
- Cancel anytime
Buy Now
Price includes VAT (Japan)
Instant access to the full article PDF.
Similar content being viewed by others
References
Alber, M.S., Fedorov, Y.N.: Algebraic geometrical solutions for certain evolution equations and Hamiltonian flows on nonlinear subvarieties of generalized Jacobians. Inverse Probl.17, 1017–1042 (2001)
Baldwin, S., Eilbeck, J.C., Gibbonsa, J., Ônishi, Y.: Abelian functions for cyclic trigonal curves of genus 4. J. Geom. Phys.58, 450–467 (2008)
Belokolos, E.D., Bobenko, A.I., Enol’skii, V.Z., Its, A.R., Matveev, V.B.: Algebro-Geometric Approach to Nonlinear Integrable Equations. Springer, Berlin (1994)
Brezhnev, Y.V.: Finite-band potentials with trigonal curves. Theor. Math. Phys.133, 1657–1662 (2002)
Calogero, F., Francoise, J.P.: Periodic solutions of a many-rotator problem in the plane. Inverse Probl.17, 871–878 (2001)
Cao, C.W., Wu, Y.T., Geng, X.G.: Relation between the Kadomtsev–Petviashvili equation and the confocal involutive system. J. Math. Phys.40, 3948–3970 (1999)
Date, E., Tanaka, S.: Periodic multi-soliton solutions of Korteweg–de Vries equation and Toda lattice. Prog. Theor. Phys. Suppl.59, 107–125 (1976)
Date, E., Jimbo, M., Kashiwara, M., Miwa, T.: Transformation groups for soliton equations. VI. KP hierarchies of orthogonal and symplectic type. J. Phys. Soc. Jpn.50, 3813–3818 (1981)
Dickson, R., Gesztesy, F., Unterkofler, K.: A new approach to the Boussinesq hierarchy. Math. Nachr.198, 51–108 (1999a)
Dickson, R., Gesztesy, F., Unterkofler, K.: Algebro-geometric solutions of the Boussinesq hierarchy. Rev. Math. Phys.11, 823–879 (1999b)
Dubrovin, B.A.: Theta functions and nonlinear equations. Russ. Math. Surv.36, 11–92 (1981)
Eilbeck, J.C., Enolskii, V.Z., Matsutani, S., Ônishi, Y., Previato, E.: Abelian functions for purely trigonal curves of genus three. Int. Math. Res. Not.1, rnm140 (2008). 38 pp.
Geng, X.G., Cao, C.W.: Decomposition of the (2+1)-dimensional Gardner equation and its quasi-periodic solutions. Nonlinearity14, 1433–1452 (2001)
Geng, X.G., Dai, H.H., Zhu, J.Y.: Decomposition of the discrete Ablowitz–Ladik hierarchy. Stud. Appl. Math.118, 281–312 (2007)
Geng, X.G., Wu, L.H., He, G.L.: Algebro-geometric constructions of the modified Boussinesq flows and quasi-periodic solutions. Physica D240, 1262–1288 (2011)
Geronimo, J.S., Gesztesy, F., Holden, H.: Algebro-geometric solutions of the Baxter–Szegö difference equation. Commun. Math. Phys.258, 149–177 (2005)
Gesztesy, F., Holden, H.: Soliton Equations and Their Algebro-Geometric Solutions. Cambridge University Press, Cambridge (2003a)
Gesztesy, F., Holden, H.: Algebro-geometric solutions of the Camassa–Holm hierarchy. Rev. Mat. Iberoam.19, 73–142 (2003b)
Gesztesy, F., Ratneseelan, R.: An alternative approach to algebro-geometric solutions of the AKNS hierarchy. Rev. Math. Phys.10, 345–391 (1998)
Griffiths, P., Harris, J.: Principles of Algebraic Geometry. Wiley, New York (1994)
Hereman, W., Nuseir, A.: Symbolic methods to construct exact solutions of nonlinear partial differential equations. Math. Comput. Simul.43, 13–27 (1997)
Kaup, D.J.: On the inverse scattering problem for cubic eigenvalue problems of the classψxxx+6qψx+6rψ=λψ. Stud. Appl. Math.62, 189–216 (1980)
Krichever, I.M.: Algebraic-geometric construction of the Zaharov–Sabat equations and their periodic solutions. Dokl. Akad. Nauk SSSR227, 394–397 (1976)
Krichever, I.M., Novikov, S.P.: Periodic and almost-periodic potential in inverse problems. Inverse Probl.15, 117–144 (1999)
Kupershmidt, B.A.: A super Korteweg–De Vries equation: an integrable system. Phys. Lett. A102, 213–215 (1984)
Leble, S.B., Ustinov, N.V.: Third order spectral problems: reductions and Darboux transformations. Inverse Probl.10, 617–633 (1994)
Ma, Y.C., Ablowitz, J.M.: The periodic cubic Schrödinger equation. Stud. Appl. Math.65, 113–158 (1981)
Matveev, V.B., Smirnov, A.O.: On the Riemann theta function of a trigonal curve and solutions of the Boussinesq and KP equations. Lett. Math. Phys.14, 25–31 (1987a)
Matveev, V.B., Smirnov, A.O.: Simplest trigonal solutions of the Boussinesq and Kadomtsev–Petviashvili equations. Sov. Phys. Dokl.32, 202–204 (1987b)
Matveev, V.B., Smirnov, A.O.: Symmetric reductions of the Riemann theta function and some of their applications to the Schrödinger and Boussinesq equations. Am. Math. Soc. Transl.157, 227–237 (1993)
McKean, H.P.: Boussinesq’s equation on the circle. Commun. Pure Appl. Math.34, 599–691 (1981)
McKean, H.P.: Boussinesq’s equation: how it blows up. In: Berger, M.S. (ed.) J C Maxwell, the Sesquiecentennial Symposium, pp. 91–105. North-Holland, Amsterdam (1984)
Miller, P.D., Ercolani, N.N., Krichever, I.M., Levermore, C.D.: Finite genus solutions to the Ablowitz–Ladik equations. Commun. Pure Appl. Math.48, 1369–1440 (1995)
Mumford, D.: Tata Lectures on Theta II. Birkhäuser, Boston (1984)
Musette, M., Conte, R.: Bäcklund transformation of partial differential equations from the Painlevé–Gambier classification. I. Kaup–Kupershmidt equation. J. Math. Phys.39, 5617–5630 (1998)
Musette, M., Verhoeven, C.: Nonlinear superposition formula for the Kaup–Kupershmidt partial differential equation. Physica D144, 211–220 (2000)
Ônishi, Y.: Abelian functions for trigonal curves of degree four and determinantal formulae in purely trigonal case. Int. J. Math.20, 427–441 (2009)
Parker, A.: On soliton solutions of the Kaup–Kupershmidt equation. I: Direct bilinearisation and solitary wave. Physica D137, 25–33 (2000a)
Parker, A.: On soliton solutions of the Kaup–Kupershmidt equation. II: Anomalous N-soliton solutions. Physica D137, 34–48 (2000b)
Previato, E.: The Calogero–Moser–Krichever system and elliptic Boussinesq solitons. In: Harnad, J., Marsden, J.E. (eds.) Hamiltonian Systems, Transformation Groups and Spectral Transform Methods, pp. 57–67. CRM, Monreal (1990)
Previato, E.: Monodromy of Boussinesq elliptic operators. Acta Appl. Math.36, 49–55 (1994)
Previato, E., Verdier, J.L.: Boussinesq elliptic solitons: the cyclic case. In: Ramanan, S., Beauville, A. (eds.) Proc. Indo-French Conf. on Geometry, Delhi, 1993, pp. 173–185. Hindustan Book Agency, Delhi (1993)
Qiao, Z.J.: The Camassa–Holm hierarchy,N-dimensional integrable systems, and algebro-geometric solution on a symplectic submanifold. Commun. Math. Phys.239, 309–341 (2003)
Reyes, E.G.: Nonlocal symmetries and the Kaup–Kupershmidt equation. J. Math. Phys.46, 073507 (2005)
Reyes, E.G., Sanchez, G.: Explicit solutions to the Kaup–Kupershmidt equation via nonlocal symmetries. Int. J. Bifurc. Chaos Appl. Sci. Eng.17, 2749–2763 (2007)
Smirnov, A.O.: A matrix analogue of Appell’s theorem and reductions of multidimensional Riemann theta-functions. Math. USSR Sb.61, 379–388 (1988)
Smirnov, A.O.: Two-gap elliptic solutions to integrable nonlinear equations. Math. Notes58, 735–743 (1995)
Valls, C.: Quasiperiodic solutions for dissipative Boussinesq systems. Commun. Math. Phys.265, 305–331 (2006)
Acknowledgements
This work was supported by the National Natural Science Foundation of China (project no. 11171312), Innovation Scientists and Technicians Troop Construction Projects of Henan Province (084200410019).
Author information
Authors and Affiliations
Department of Mathematics, Zhengzhou University, 100 Kexue Road, Zhengzhou, Henan, 450001, People’s Republic of China
Xianguo Geng, Lihua Wu & Guoliang He
- Xianguo Geng
You can also search for this author inPubMed Google Scholar
- Lihua Wu
You can also search for this author inPubMed Google Scholar
- Guoliang He
You can also search for this author inPubMed Google Scholar
Corresponding author
Correspondence toXianguo Geng.
Additional information
Communicated by P. Newton.
Rights and permissions
About this article
Cite this article
Geng, X., Wu, L. & He, G. Quasi-periodic Solutions of the Kaup–Kupershmidt Hierarchy.J Nonlinear Sci23, 527–555 (2013). https://doi.org/10.1007/s00332-012-9160-3
Received:
Accepted:
Published:
Issue Date:
Share this article
Anyone you share the following link with will be able to read this content:
Sorry, a shareable link is not currently available for this article.
Provided by the Springer Nature SharedIt content-sharing initiative