4972Accesses
96Citations
4 Altmetric
Abstract
Modular polyketide synthases (type I PKSs) in bacteria are responsible for synthesizing a significant percentage of bioactive natural products. This group of synthases has a characteristic modular organization, and each module within a PKS carries out one cycle of polyketide chain elongation; thus each module isnon-iterative in function. It was possible to predict the basic structure of a polyketide product from the module organization of the PKSs, since there generally existed a co-linearity between the number of modules and the number of chain elongations. However, more and more bacterial modular PKSs fail to conform to thecanonical rules, and a particularly noteworthy group of non-canonical PKSs is the bacterial iterative type I PKSs. This review covers recent examples of iteratively used modular PKSs in bacteria. These non-canonical PKSs give rise to a large array of natural products with impressive structural diversity. The molecular mechanism behind the iterations is often unclear, presenting a new challenge to the rational engineering of these PKSs with the goal of generating new natural products. Structural elucidation of these synthase complexes and better understanding of potential PKS-PKS interactions as well as PKS-substrate recognition may provide new prospects and inspirations for the discovery and engineering of new bioactive polyketides.
This is a preview of subscription content,log in via an institution to check access.
Access this article
Subscribe and save
- Starting from 10 chapters or articles per month
- Access and download chapters and articles from more than 300k books and 2,500 journals
- Cancel anytime
Buy Now
Price includes VAT (Japan)
Instant access to the full article PDF.








Similar content being viewed by others
Explore related subjects
Discover the latest articles, books and news in related subjects, suggested using machine learning.References
Ahlert J, Shepard E, Lomovskaya N, Zazopoulos E, Staffa A, Bachmann BO, Huang KX, Fonstein L, Czisny A, Whitwam RE, Farnet CM, Thorson JS (2002) The calicheamicin gene cluster and its iterative type I enediyne PKS. Science 297:1173–1176
Antosch J, Schaefers F, Gulder TA (2014) Heterologous reconstitution of ikarugamycin biosynthesis inE. coli. Angew Chem Int Ed 53:3011–3014
Belecki K, Townsend CA (2012) Environmental control of the calicheamicin polyketide synthase leads to detection of a programmed octaketide and a proposal for enediyne biosynthesis. Angew Chem Int Ed 51:11316–11319
Belecki K, Townsend CA (2013) Biochemical determination of enzyme-bound metabolites: preferential accumulation of a programmed octaketide on the enediyne polyketide synthase CalE8. J Am Chem Soc 135:14339–14348
Belecki K, Crawford JM, Townsend CA (2009) Production of octaketide polyenes by the calicheamicin polyketide synthase CalE8: implications for the biosynthesis of enediyne core structures. J Am Chem Soc 131:12564–12566
Beyer S, Kunze B, Silakowski B, Muller R (1999) Metabolic diversity in myxobacteria: identification of the myxalamid and the stigmatellin biosynthetic gene cluster ofStigmatella aurantiaca Sg a15 and a combined polyketide-(poly)peptide gene cluster from the epothilone producing strainSorangium cellulosum So ce90. Biochim Biophys Acta 1445:185–195
Blodgett JAV, Oh DC, Cao SG, Currie CR, Kolter R, Clardy J (2010) Common biosynthetic origins for polycyclic tetramate macrolactams from phylogenetically diverse bacteria. Proc Natl Acad Sci U S A 107:11692–11697
Bretschneider T, Heim JB, Heine D, Winkler R, Busch B, Kusebauch B, Stehle T, Zocher G, Hertweck C (2013) Vinylogous chain branching catalysed by a dedicated polyketide synthase module. Nature 502:124–128
Broadhurst RW, Nietlispach D, Wheatcroft MP, Leadlay PF, Weissman KJ (2003) The structure of docking domains in modular polyketide synthases. Chem Biol 10:723–731
Busch B, Hertweck C (2009) Evolution of metabolic diversity in polyketide-derived pyrones: using the non-colinear aureothin assembly line as a model system. Phytochem 70:1833–1840
Busch B, Ueberschaar N, Sugimoto Y, Hertweck C (2012) Interchenar retrotransfer of aureothin intermediates in an iterative polyketide synthase module. J Am Chem Soc 134:12382–12385
Busch B, Ueberschaar N, Behnken S, Sugimoto Y, Werneburg M, Traitcheva N, He J, Hertweck C (2013) Multifactorial control of iteration events in a modular polyketide assembly line. Angew Chem Int Ed 52:5285–5289
Castillo YP, Perez MA (2008) Bacterial beta-ketoacyl-acyl carrier protein synthase III (FabH): an attractive target for the design of new broad-spectrum antimicrobial agents. Mini Rev Med Chem 8:36–45
Challis GL (2008) Genome mining for novel natural product discovery. J Med Chem 51:2618–2628
Chan YA, Podevels AM, Kevany BM, Thomas MG (2009) Biosynthesis of polyketide synthase extender units. Nat Prod Rep 26:90–114
Chen YL, Zhao J, Liu W, Gao JF, Tao LM, Pan HX, Tang GL (2012) Identification of phoslactomycin biosynthetic gene clusters fromStreptomyces platensis SAM-0654 and characterization of PnR1 and PnR2 as positive transcriptional regulators. Gene 509:195–200
Cheng YQ, Tang GL, Shen B (2002) Identification and localization of the gene cluster encoding biosynthesis of the antitumor macrolactam leinamycin inStreptomyces atroolivaceus S-140. J Bacteriol 184:7013–7024
Cheng YQ, Tang GL, Shen B (2003) Type I polyketide synthase requiring a discrete acyltransferase for polyketide biosynthesis. Proc Natl Acad Sci U S A 100:3149–3154
Chopra T, Banerjee S, Gupta S, Yadav G, Anand S, Surolia A, Roy RP, Mohanty D, Gokhale RS (2008) Novel intermolecular iterative mechanism for biosynthesis of mycoketide synthase by a bimodular polyketide synthase. PLoS Biol 6:1584–1598
Cortes J, Haydock SF, Roberts GA, Bevitt DJ, Leadlay PF (1990) An unusually large multifunctional polypeptide in the erythromycin-producing polyketide synthase ofSaccharopolyspora erythraea. Nature 348:176–178
Cox RJ (2007) Polyketides, proteins and genes in fungi: programmed nano-machines begin to reveal their secrets. Org Biomol Chem 5:2010–2026
Crawford JM, Townsend CA (2010) New insights into the formation of fungal aromatic polyketides. Nat Rev Microbiol 8:879–889
Daum M, Peintner I, Linnenbrink A, Frerich A, Weber M, Paululat T, Bechthold A (2009) Organization of the biosynthetic gene cluster and tailoring enzymes in the biosynthesis of the tetracyclic quinone glycoside antibiotic polyketomycin. ChemBioChem 10:1073–1083
Ding W, Deng W, Tang MC, Zhang Q, Tang GL, Bi YR, Liu W (2010) Biosynthesis of 3-methoxy-5-methyl naphthoic acid and its incorporation into the antitumor antibiotic azinomycin B. Mol Biosyst 6:1071–1081
Donadio S, Staver MJ, McAlpine JB, Swanson SJ, Katz L (1991) Modular organization of genes required for complex polyketide biosynthesis. Science 252:675–679
El-Sayed AK, Hothersall J, Cooper SM, Stephens E, Simpson TJ, Thomas CM (2003) Characterization of the mupirocin biosynthesis gene cluster fromPseudomonas fluorescens NCIMB 10586. Chem Biol 10:419–430
Fisch KM (2013) Biosynthesis of natural products by microbial iterative hybrid PKS-NRPS. Rsc Adv 3:18228–18247
Fischbach MA, Walsh CT (2006) Assembly-line enzymology for polyketide and nonribosomal peptide antibiotics: logic, machinery, and mechanisms. Chem Rev 106:3468–3496
Fujii I (2010) Functional analysis of fungal polyketide biosynthesis genes. J Antibiot 63:207–218
Gaisser S, Trefzer A, Stockert S, Kirschning A, Bechthold A (1997) Cloning of an avilamycin biosynthetic gene cluster fromStreptomyces viridochromogenes Tu57. J Bacteriol 179:6271–6278
Gaitatzis N, Silakowski B, Kunze B, Nordsiek G, Blocker H, Hofle G, Muller R (2002) The biosynthesis of the aromatic myxobacterial electron transport inhibitor stigmatellin is directed by a novel type of modular polyketide synthase. J Biol Chem 277:13082–13090
Gay DC, Gay G, Axelrod AJ, Jenner M, Kohlhaas C, Kampa A, Oldham NJ, Piel J, Keatinge-Clay AT (2014) A close look at a ketosynthase from a trans-acyltransferase modular polyketide synthase. Structure 22:444–451
Gemperlein K, Rachid S, Garcia RO, Wenzel SC, Muller R (2014) Polyunsaturated fatty acid biosynthesis in myxobacteria: different PUFA synthases and their product diversity. Chem Sci 5:1733–1741
Hardt IH, Steinmetz H, Gerth K, Sasse F, Reichenbach H, Hofle G (2001) New natural epothilones fromSorangium cellulosum, strains So ce90/B2 and So ce90/D13: Isolation, structure elucidation, and SAR studies. J Nat Prod 64:847–856
He J, Hertweck C (2003) Iteration as programmed event during polyketide assembly; molecular analysis of the aureothin biosynthesis gene cluster. Chem Biol 10:1225–1232
He J, Hertweck C (2005) Functional analysis of the aureothin iterative type I polyketide synthase. ChemBioChem 6:908–912
He Q, Jia X, Tang M, Tian Z, Tang G, Liu W (2009) Dissection of two acyl-transfer reactions centered on acyl-S-carrier protein intermediates for incorporating 5-chloro-6-methyl-O-methylsalicyclic acid into chlorothricin. ChemBioChem 10:813–819
Hertweck C (2009) The biosynthetic logic of polyketide diversity. Angew Chem Int Ed 48:4688–4716
Hertweck C (2015) Decoding and reprogramming complex polyketide assembly lines: prospects for synthetic biology. Trends Biochem Sci 40:189–199
Hopwood DA (1997) Genetic contributions to understanding polyketide synthases. Chem Rev 97:2465–2497
Ito T, Roongsawang N, Shirasaka N, Lu WL, Flatt PM, Kasanah N, Miranda C, Mahmud T (2009) Deciphering pactamycin biosynthesis and engineered production of new pactamycin analogues. ChemBioChem 10:2253–2265
Jenke-Kodama H, Sandmann A, Muller R, Dittmann E (2005) Evolutionary implications of bacterial polyketide synthases. Mol Biol Evol 22:2027–2039
Jia XY, Tian ZH, Shao L, Qu XD, Zhao QF, Tang J, Tang GL, Liu W (2006) Genetic characterization of the chlorothricin gene cluster as a model for spirotetronate antibiotic biosynthesis. Chem Biol 13:575–585
Jiang H, Zirkle R, Metz JG, Braun L, Richter L, Van Lanen SG, Shen B (2008) The role of tandem acyl carrier protein domains in polyunsaturated fatty acid biosynthesis. J Am Chem Soc 130:6336–6337
Julien B, Shah S, Ziermann R, Goldman R, Katz L, Khosla C (2000) Isolation and characterization of the epothilone biosynthetic gene cluster fromSorangium cellulosum. Gene 249:153–60
Kapur S, Lowry B, Yuzawa S, Kenthirapalan S, Chen AY, Cane DE, Khosla C (2012) Reprogramming a module of the 6-deoxyerythronolide B synthase for iterative chain elongation. Proc Natl Acad Sci U S A 109:4110–5
Katz L (2009) The DEBS paradigm for type I modular polyketide synthases and beyond. Methods Enzymol 459:113–142
Kaulmann U, Hertweck C (2002) Biosynthesis of polyunsaturated fatty acids by polyketide synthases. Angew Chem Int Ed 41:1866–1869
Keatinge-Clay AT (2007) A tylosin ketoreductase reveals how chirality is determined in polyketides. Chem Biol 14:898–908
Kennedy J, Auclair K, Kendrew SG, Park C, Vederas JC, Hutchinson CR (1999) Modulation of polyketide synthase activity by accessory proteins during lovastatin biosynthesis. Science 284:1368–1372
Khosla C (2000) Natural product biosynthesis: a new interface between enzymology and medicine. J Org Chem 65:8127–8133
Khosla C, Kapur S, Cane DE (2009) Revisiting the modularity of modular polyketide synthases. Curr Opin Chem Biol 13:135–143
Lam KS, Veitch JA, Golik J, Krishnan B, Klohr SE, Volk KJ, Forenza S, Doyle TW (1993) Biosynthesis of esperamicin A1, an enediyne antitumor antibiotic. J Am Chem Soc 115:12340–12345
Li S, Du L, Yuen G, Harris SD (2006) Distinct ceramide synthases regulate polarized growth in the filamentous fungusAspergillus nidulans. Mol Biol Cell 17:1218–1227
Li Y, Chen H, Ding Y, Xie Y, Wang H, Cerny RL, Shen Y, Du L (2014) Iterative assembly of two separate polyketide chains by the same single-module bacterial polyketide synthase in the biosynthesis of HSAF. Angew Chem Int Ed 53:7524–7530
Liu W, Christenson SD, Standage S, Shen B (2002) Biosynthesis of the enediyne antitumor antibiotic C-1027. Science 297:1170–1173
Liu J, Zhu X, Seipke RF, Zhang W (2015a) Biosynthesis of antimycins with a reconstituted 3-formamidosalicylate pharmacophore inEscherichia coli. ACS Synth Biol 4:559–565
Liu L, Zhang Z, Shao CL, Wang JL, Bai H, Wang CY (2015b) Bioinformatical analysis of the sequences, structures and functions of fungal polyketide synthase product template domains. Sci Rep 5:10463
Lou L, Qian G, Xie Y, Hang J, Chen H, Zaleta-Rivera K, Li Y, Shen Y, Dussault PH, Liu F, Du L (2011) Biosynthesis of HSAF, a tetramic acid-containing macrolactam fromLysobacter enzymogenes. J Am Chem Soc 133:643–645
Lou L, Chen H, Cerny RL, Li Y, Shen Y, Du L (2012) Unusual activities of the thioesterase domain for the biosynthesis of the polycyclic tetramate macrolactam HSAF inLysobacter enzymogenes C3. Biochemistry 51:4–6
Menche D, Arikan F, Perlova O, Horstmann N, Ahlbrecht W, Wenzel SC, Jansen R, Irschik H, Muller R (2008) Stereochemical determination and complex biosynthetic assembly of etnangien, a highly potent RNA polymerase inhibitor from the myxobacteriumSorangium cellulosum. J Am Chem Soc 130:14234–14243
Metz JG, Roessler P, Facciotti D, Levering C, Dittrich F, Lassner M, Valentine R, Lardizabal K, Domergue F, Yamada A, Yazawa K, Knauf V, Browse J (2001) Production of polyunsaturated fatty acids by polyketide synthases in both prokaryotes and eukaryotes. Science 293:290–293
Mochizuki S, Hiratsu K, Suwa M, Ishii T, Sugino F, Yamada K, Kinashi H (2003) The large linear plasmid pSLA2-L ofStreptomyces rochei has an unusually condensed gene organization for secondary metabolism. Mol Microbiol 48:1501–1510
Molnar I, Schupp T, Ono M, Zirkle R, Milnamow M, Nowak-Thompson B, Engel N, Toupet C, Stratmann A, Cyr DD, Gorlach J, Mayo JM, Hu A, Goff S, Schmid J, Ligon JM (2000) The biosynthetic gene cluster for the microtubule-stabilizing agents epothilones A and B fromSorangium cellulosum So ce90. Chem Biol 7:97–109
Moore BS, Hopke JN (2001) Discovery of a new bacterial polyketide biosynthetic pathway. ChemBioChem 2:35–38
Moss SJ, Martin CJ, Wilkinson B (2004) Loss of co-linearity by modular polyketide synthases: a mechanism for the evolution of chemical diversity. Nat Prod Rep 21:575–593
Muller R (2004) Don’t classify polyketide synthases. Chem Biol 11:4–6
Muller S, Rachid S, Hoffmann T, Surup F, Volz C, Zaburannyi N, Muller R (2014) Biosynthesis of crocacin involves an unusual hydrolytic release domain showing similarity to condensation domains. Chem Biol 21:855–865
Musiol EM, Weber T (2012) Discrete acyltransferases involved in polyketide biosynthesis. MedChemComm 3:871–886
Musiol EM, Hartner T, Kulik A, Moldenhauer J, Piel J, Wohlleben W, Weber T (2011) Supramolecular templating in kirromycin biosynthesis: the acyltransferase KirCII loads ethylmalonyl-CoA extender onto a specific ACP of the trans-AT PKS. Chem Biol 18:438–444
Okuyama H, Orikasa Y, Nishida T, Watanabe K, Morita N (2007) Bacterial genes responsible for the biosynthesis of eicosapentaenoic and docosahexaenoic acids and their heterologous expression. Appl Environ Microbiol 73:665–670
Omura S, Ikeda H, Ishikawa J, Hanamoto A, Takahashi C, Shinose M, Takahashi Y, Horikawa H, Nakazawa H, Osonoe T, Kikuchi H, Shiba T, Sakaki Y, Hattori M (2001) Genome sequence of an industrial microorganismStreptomyces avermitilis: deducing the ability of producing secondary metabolites. Proc Natl Acad Sci U S A 98:12215–12220
Palaniappan N, Alhamadsheh MM, Reynolds KA (2008)cis-Delta(2,3)-double bond of phoslactomycins is generated by a post-PKS tailoring enzyme. J Am Chem Soc 130:12236–12237
Piel J (2010) Biosynthesis of polyketides by trans-AT polyketide synthases. Nat Prod Rep 27:996–1047
Shen B, Thorson JS (2012) Expanding nature’s chemical repertoire through metabolic engineering and biocatalysis. Curr Opin Chem Biol 16:99–100
Shen B, Cheng YQ, Christenson SD, Jiangi H, Ju JH, Kwon HJ, Lim SK, Liu W, Nonaka K, Seo JW, Smith WC, Standage S, Tang GL, Van Lanen S, Zhang J (2007) Polyketide biosynthesis beyond the Type I, II, and III polyketide synthase paradigms: a progress report. Acs Sym Ser 955:154–166
Sherman DH (2005) The Lego-ization of polyketide biosynthesis. Nat Biotechnol 23:1083–1084
Smith S, Tsai SC (2007) The type I fatty acid and polyketide synthases: a tale of two megasynthases. Nat Prod Rep 24:1041–1072
Staunton J, Weissman KJ (2001) Polyketide biosynthesis: a millennium review. Nat Prod Rep 18:380–416
Sugimoto Y, Ding L, Ishida K, Hertweck C (2014) Rational design of modular polyketide synthases: morphing the aureothin pathway into a luteoreticulin assembly line. Angew Chem Int Ed 53:1560–1564
Sugimoto Y, Ishida K, Traitcheva N, Busch B, Dahse HM, Hertweck C (2015) Freedom and constraint in engineered noncolinear polyketide assembly lines. Chem Biol 22:229–240
Sun H, Ho C, Ding F, Soehano I, Liu X, Liang Z (2012) Synthesis of (R)-mellein by a partially reducing iterative polyketide synthase. J Am Chem Soc 134:11924–11927
Takahashi S, Toyoda A, Sekiyama Y, Takagi H, Nogawa T, Uramoto M, Suzuki R, Koshino H, Kumano T, Panthee S, Dairi T, Ishikawa J, Ikeda H, Sakaki Y, Osada H (2011) Reveromycin A biosynthesis uses RevG and RevJ for stereospecific spiroacetal formation. Nat Chem Biol 7:461–468
Traitcheva N, Jenke-Kodama H, He J, Dittmann E, Hertweck C (2007) Non-colinear polyketide biosynthesis in the aureothin and neoaureothin pathways: an evolutionary perspective. ChemBioChem 8:1841–1849
Van Lanen SG, Oh TJ, Liu W, Wendt-Pienkowski E, Shen B (2007) Characterization of the maduropeptin biosynthetic gene cluster fromActinomadura madurae ATCC 39144 supporting a unifying paradigm for enediyne biosynthesis. J Am Chem Soc 129:13082–13094
Van Lanen SG, Lin SJ, Shen B (2008) Biosynthesis of the enediyne antitumor antibiotic C-1027 involves a new branching point in chorismate metabolism. Proc Natl Acad Sci U S A 105:494–499
Watanabe K (2008) Exploring the biosynthesis of natural products and their inherent suitability for the rational design of desirable compounds through genetic engineering. Biosci Biotechnol Biochem 72:2491–2506
Weissman KJ, Leadlay PF (2005) Combinatorial biosynthesis of reduced polyketides. Nat Rev Microbiol 3:925–936
Weitnauer G, Muhlenweg A, Trefzer A, Hoffmeister D, Sussmuth RD, Jung G, Welzel K, Vente A, Girreser U, Bechthold A (2001) Biosynthesis of the orthosomycin antibiotic avilamycin A: deductions from the molecular analysis of theavi biosynthetic gene cluster ofStreptomyces viridochromogenes Tu57 and production of new antibiotics. Chem Biol 8:569–581
Weitnauer G, Hauser G, Hofmann C, Linder U, Boll R, Pelz K, Glaser SJ, Bechthold A (2004) Novel avilamycin derivatives with improved polarity generated by targeted gene disruption. Chem Biol 11:1403–1411
Wilkinson B, Foster G, Rudd BAM, Taylor NL, Blackaby AP, Sidebottom PJ, Cooper DJ, Dawson MJ, Buss AD, Gaisser S, Bohm IU, Rowe CJ, Cortes J, Leadlay PF, Staunton J (2000) Novel octaketide macrolides related to 6-deoxyerythronolide B provide evidence for iterative operation of the erythromycin polyketide synthase. Chem Biol 7:111–117
Wilkinson B, Kendrew SG, Sheridan RM, Leadlay PF (2003) Biosynthetic engineering of polyketide synthases. Expert Opin Ther Pat 13:1579–1606
Williams GJ (2013) Engineering polyketide synthases and nonribosomal peptide synthetases. Curr Opin Struct Biol 23:603–612
Winter JM, Tang Y (2012) Synthetic biological approaches to natural product biosynthesis. Curr Opin Biotechnol 23:736–743
Winter JM, Behnken S, Hertweck C (2011) Genomics-inspired discovery of natural products. Curr Opin Chem Biol 15:22–31
Wu J, Zaleski TJ, Valenzano C, Khosla C, Cane DE (2005) Polyketide double bond biosynthesis. Mechanistic analysis of the dehydratase-containing module 2 of the picromycin/methymycin polyketide synthase. J Am Chem Soc 127:17393–17404
Xiao Y, Li S, Niu S, Ma L, Zhang G, Zhang H, Zhang G, Ju J, Zhang C (2011) Characterization of tiacumicin B biosynthetic gene cluster affording diversified tiacumicin analogues and revealing a tailoring dihalogenase. J Am Chem Soc 133:1092–1105
Xu W, Qiao KJ, Tang Y (2013) Structural analysis of protein-protein interactions in type I polyketide synthases. Crit Rev Biochem Mol Biol 48:98–122
Xu L, Wu P, Wright SJ, Du L, Wei X (2015) Bioactive polycyclic tetramate macrolactams fromLysobacter enzymogenes and their absolute configurations by theoretical ECD calculations. J Nat Prod 78:1841–1847
Yu F, Zaleta-Rivera K, Zhu X, Huffman J, Millet JC, Harris SD, Yuen G, Li XC, Du L (2007) Structure and biosynthesis of heat-stable antifungal factor (HSAF), a broad-spectrum antimycotic with a novel mode of action. Antimicrob Agents Chemother 51:64–72
Zabala AO, Cacho RA, Tang Y (2012) Protein engineering towards natural product synthesis and diversification. J Ind Microbiol Biotechnol 39:227–241
Zazopoulos E, Huang KX, Staffa A, Liu W, Bachmann BO, Nonaka K, Ahlert J, Thorson JS, Shen B, Farnet CM (2003) A genomics-guided approach for discovering and expressing cryptic metabolic pathways. Nat Biotechnol 21:187–190
Zhang W, Tang Y (2009) In vitro analysis of type II polyketide synthase. Methods in Enzymology: Microbial Natural Product Biosynthesis 459:367–393
Zhang Q, Pang B, Ding W, Liu W (2013) Aromatic polyketides produced by bacterial iterative type I polyketide synthases. ACS Catal 3:1439–1447
Zhang G, Zhang W, Zhang Q, Shi T, Ma L, Zhu Y, Li S, Zhang H, Zhao Y, Shi R, Zhang C (2014) Mechanistic insights into polycycle formation by reductive cyclization in ikarugamycin biosynthesis. Angew Chem Int Ed 53:4840–4844
Zhao QF, He QL, Ding W, Tang MC, Kang QJ, Yu Y, Deng W, Zhang Q, Fang J, Tang GL, Liu W (2008) Characterization of the azinomycin B biosynthetic gene cluster revealing a different iterative type I polyketide synthase for naphthoate biosynthesis. Chem Biol 15:693–705
Zou Y, Yin H, Kong D, Deng Z, Lin S (2013) A trans-acting ketoreductase in biosynthesis of a symmetric polyketide dimer SIA7248. ChemBioChem 14:679–683
Funding
This study was supported in part by the NIH (R01AI097260), NSFC (31329005), and a University of Nebraska-Lincoln Redox Biology Center pilot grant.
Author information
Authors and Affiliations
Department of Chemistry, University of Nebraska—Lincoln, Lincoln, NE, 68588, USA
Haotong Chen & Liangcheng Du
- Haotong Chen
Search author on:PubMed Google Scholar
- Liangcheng Du
Search author on:PubMed Google Scholar
Corresponding author
Correspondence toLiangcheng Du.
Ethics declarations
Conflict of interest
Haotong Chen declares that she has no conflict of interest; Liangcheng Du declares that he has no conflict of interest.
Ethical approval
This article does not contain any studies with human participants or animals performed by any of the authors.
Rights and permissions
About this article
Cite this article
Chen, H., Du, L. Iterative polyketide biosynthesis by modular polyketide synthases in bacteria.Appl Microbiol Biotechnol100, 541–557 (2016). https://doi.org/10.1007/s00253-015-7093-0
Received:
Revised:
Accepted:
Published:
Issue date:
Share this article
Anyone you share the following link with will be able to read this content:
Sorry, a shareable link is not currently available for this article.
Provided by the Springer Nature SharedIt content-sharing initiative


