414Accesses
5Citations
Abstract
The advice complexity of an online problem is a measure of how much knowledge of the future an online algorithm needs in order to achieve a certain competitive ratio. Using advice complexity, we define the first online complexity class, AOC. The class includes independent set, vertex cover, dominating set, and several others as complete problems. AOC-complete problems are hard, since a single wrong answer by the online algorithm can have devastating consequences. For each of these problems, we show that\(\log \left (1+(c-1)^{c-1}/c^{c}\right )n={\Theta } (n/c)\) bits of advice are necessary and sufficient (up to an additive term of\(O(\log n)\)) to achieve a competitive ratio ofc. The results are obtained by introducing a new string guessing problem related to those of Emek et al. (Theor. Comput. Sci.412(24), 2642–26562011) and Böckenhauer et al. (Theor. Comput. Sci.554, 95–1082014). It turns out that this gives a powerful but easy-to-use method for providing both upper and lower bounds on the advice complexity of an entire class of online problems, the AOC-complete problems. Previous results of Halldórsson et al. (Theor. Comput. Sci.289(2), 953–9622002) on online independent set, in a related model, imply that the advice complexity of the problem is Θ(n/c). Our results improve on this by providing an exact formula for the higher-order term. For online disjoint path allocation, Böckenhauer et al. (ISAAC2009) gave a lower bound of Ω(n/c) and an upper bound of\(O((n\log c)/c)\) on the advice complexity. We improve on the upper bound by a factor of\(\log c\). For the remaining problems, no bounds on their advice complexity were previously known.
This is a preview of subscription content,log in via an institution to check access.
Access this article
Subscribe and save
- Get 10 units per month
- Download Article/Chapter or eBook
- 1 Unit = 1 Article or 1 Chapter
- Cancel anytime
Buy Now
Price includes VAT (Japan)
Instant access to the full article PDF.




Similar content being viewed by others
References
Alon, N., Awerbuch, B., Azar, Y., Buchbinder, N., Naor, J.: The online set cover problem. SIAM J. Comput. 39 (2), 361–370 (2009).
Barhum, K.: Tight Bounds for the Advice Complexity of the Online Minimum Steiner Tree Problem. Proceedings of the 40th International Conference on Current Trends in Theory and Practice of Computer Science (SOFSEM), Lecture Notes in Computer Science. Springer, 77–88 (2014).
Barhum, K., Böckenhauer, H.J., Forišek, M., Gebauer, H., Hromkovič, J., Krug, S., Smula, J., Steffen, B.: On the Power of Advice and Randomization for the Disjoint Path Allocation Problem. In Proceedings of the 40th International Conference on Current Trends in Theory and Practice of Computer Science (SOFSEM), Lecture Notes in Computer Science. Springer, 89–101 (2014).
Bianchi, M.P., Böckenhauer, H.J., Hromkovič, J., Keller, L.: Online coloring of bipartite graphs with and without advice. Algorithmica. 70 (1), 92–111 (2014).
Böckenhauer, H.J., Hromkovič, J., Komm, D., Krug, S., Smula, J., Sprock, A.: The string guessing problem as a method to prove lower bounds on the advice complexity. Theor. Comput. Sci. 554, 95–108 (2014).
Böckenhauer, H.J., Komm, D., Královič, R., Královič, R.: On the Advice Complexity of the K-Server Problem. Proceedings of the 38th International Colloquium on Automata, Languages, and Programming (ICALP), Lecture Notes in Computer Science. Springer, 207–218 (2011).
Böckenhauer, H.J., Komm, D., Královič, R., Královič, R., Mömke, T.: On the Advice Complexity of Online Problems. Proceedings of the 20th International Symposium on Algorithms and Computation (ISAAC), Lecture Notes in Computer Science. Springer, 331–340 (2009).
Böckenhauer, H.J., Komm, D., Královič, R., Rossmanith, P.: The online knapsack problem: Advice and randomization. Theor. Comput. Sci. 554, 95–108 (2014).
Boyar, J., Kamali, S., Larsen, K.S., López-Ortiz, A.: On the List Update Problem with Advice. Proceedings of the 8th International Conference on Language and Automata Theory and Applications (LATA), Lecture Notes in Computer Science. Springer, 210–221 (2014). Full paper to appear in Information and Computation.
Boyar, J., Kamali, S., Larsen, K.S., López-Ortiz, A.: Online bin packing with advice. Algorithmica. 74, 507–527 (2016).
Demange, M., Paschos, V.T.: On-line vertex-covering. Theor. Comput. Sci. 332 (1-3), 83–108 (2005).
Dinitz, J.H., Stinson, D.R., (Eds): Contemporary Design Theory: a Collection of Surveys. Wiley-Interscience Series in Discrete Mathematics and Optimization. Wiley, New York (1992).
Dobrev, S., Královič, R., Královič, R.: Advice complexity of maximum independent set in sparse and bipartite graphs. Theory. Comput. Syst. 56 (1), 197–219 (2015).
Dobrev, S., Královič, R., Pardubská, D.: Measuring the problem-relevant information in input. RAIRO - Theor. Inf. Appl. 43 (3), 585–613 (2009).
Emek, Y., Fraigniaud, P., Korman, A., Rosén, A.: Online computation with advice. Theor. Comput. Sci. 412 (24), 2642–2656 (2011).
Erdős, P., Spencer, J.: Probabilistic Methods in Combinatorics. Academic Press, 1974.
Forišek, M., Keller, L., Steinová, M.: Advice Complexity of Online Coloring for Paths. In Proceedings of the 6th International Conference on Language and Automata Theory and Applications (LATA), Lecture Notes in Computer Science. Springer, 228–239 (2012).
Gupta, S., Kamali, S., López-Ortiz, A.: On Advice Complexity of the K-Server Problem under Sparse Metrics. Proceedings of the 20th International Colloquium on Structural Information and Communication Complexity (SIROCCO), Lecture Notes in Computer Science. Springer, 55–67 (2013).
Halldórsson, M.M., Iwama, K., Miyazaki, S., Taketomi, S.: Online independent sets. Theor. Comput. Sci. 289 (2), 953–962 (2002).
Halldórsson, M.M., Szegedy, M.: Lower bounds for on-line graph coloring. Theor. Comput. Sci. 130 (1), 163–174 (1994).
Håstad, J.: Clique is hard to approximate withinn1−𝜖. Acta Math. 182 (1), 105–142 (1999).
Hromkovič, J., Královič, R., Královič, R.: Information Complexity of Online Problems. In Proceedings of the 35th Symposium on Mathematical Foundations of Computer Science (MFCS), Lecture Notes in Computer Science. Springer, 24–36 (2010).
Karlin, A.R., Manasse, M.S., Rudolph, L., Sleator, D.D.: Competitive snoopy caching. Algorithmica. 3, 77–119 (1988).
Komm, D., Královič, R., Mömke, T.: On the Advice Complexity of the Set Cover Problem. In Proceedings of the 7th International Computer Science Symposium in Russia (CSR), Lecture Notes in Computer Science. Springer, 241–252 (2012).
Marchetti-Spaccamela, A., Vercellis, C.: Stochastic on-line knapsack problems. Math. Program. 68, 73–104 (1995).
Mikkelsen, J.W.: Optimal Online Edge Coloring of Planar Graphs with Advice. Proceedings of the 9th International Conference on Algorithms and Complexity (CIAC), Lecture Notes in Computer Science. Springer, 352–364 (2015).
Mitzenmacher, M., Upfal, E.: Probability and Computing - Randomized Algorithms and Probabilistic Analysis. Cambridge University Press (2005).
Miyazaki, S.: On the advice complexity of online bipartite matching and online stable marriage. Inf. Process. Lett. 114 (12), 714–717 (2014).
Raz, R., Safra, S.: A Sub-Constant Error-Probability Low-Degree Test, and a Sub-Constant Error-Probability PCP Characterization of NP. Proceedings of the 29th Symposium on Theory of Computing (STOC). ACM, 475–484 (1997).
Renault, M.P., Rosén, A., van Stee, R.: Online algorithms with advice for bin packing and scheduling problems. Theor. Comput. Sci. 600, 155–170 (2015).
Seibert, S., Sprock, A., Unger, W.: Advice Complexity of the Online Coloring Problem. In Proceedings of the 8th International Conference on Algorithms and Complexity (CIAC), Lecture Notes in Computer Science. Springer, 345–357 (2013).
Sleator, D.D., Tarjan, R.E.: Amortized efficiency of list update and paging rules. Commun. ACM. 28 (2), 202–208 (1985).
Acknowledgments
The authors would like to thank Magnus Gausdal Find for helpful discussions.
Author information
Authors and Affiliations
Department of Mathematics and Computer Science, University of Southern Denmark, 5230, Odense M, Denmark
Joan Boyar, Lene M. Favrholdt, Christian Kudahl & Jesper W. Mikkelsen
- Joan Boyar
You can also search for this author inPubMed Google Scholar
- Lene M. Favrholdt
You can also search for this author inPubMed Google Scholar
- Christian Kudahl
You can also search for this author inPubMed Google Scholar
- Jesper W. Mikkelsen
You can also search for this author inPubMed Google Scholar
Corresponding author
Correspondence toJoan Boyar.
Additional information
A preliminary version of this paper appeared in the proceedings of the 32nd International Symposium on Theoretical Aspects of Computer Science (STACS 2015),Leibniz International Proceedings in Informatics 30: 116-129, 2015.
This work was partially supported by the Villum Foundation and the Danish Council for Independent Research, Natural Sciences.
Appendix: A: Approximation of the Advice Complexity Bounds
Appendix: A: Approximation of the Advice Complexity Bounds
In Theorems 3–8, bounds on the advice complexity ofASG were obtained. These bounds are tight up to an additive term of\(O(\log n)\). However, within the proofs, they are all expressed in terms of the minimum size of a certain covering design or a quotient of binomial coefficients. In this appendix, we prove the closed formula estimates for the advice complexity stated in Theorems 3–8 and 11. Again, these estimates are tight up to an additive term of\(O(\log n)\). The key to obtaining the estimates is the estimation of a binomial coefficient using the binary entropy function.
1.1A.1 Approximating the FunctionB(n,c)
Lemma 15
For c>1, it holds that
Proof
We prove the upper bound first. To this end, note that
Using calculus, one may verify that\(\left (1+\frac {(c-1)^{c-1}}{c^{c}}\right )^{c}\) is decreasing inc forc>1. Thus, by continuity, it follows that
For the lower bound, let\(a=e\ln (2)\) and note that
Again, using calculus, one may verify that\(\left (1+\frac {(c-1)^{c-1}}{c^{c}}\right )^{ac}\) is decreasing inc forc>1. It follows that
□
1.2A.2 The Binary Entropy Function
In this section, we give some properties of the binary entropy function that will be used extensively in AppendixAA.4.
Definition 11
Thebinary entropy function\(H:[0,1]\rightarrow [0,1]\) is the function given by
andH(0)=H(1)=0.
Lemma 16 (Lemma 9.2 in27)
For integers m,n such that 0≤m≤n,
Proposition 1
The binary entropy function H(p) has the following properties.
Proof
(H1): Follows from the definition.
(H2): Fors>1,
(H3): Note thatH is smooth for 0<p<1. The derivative\(H^{\prime }(p)\) can be calculated from the definition. The second-order derivative is
which is strictly less than zero for all 0<p<1.
(H4): Fixt>0. The claim follows by showing that the partial derivative of\(sH(\frac {t}{s})\) with respect tos is positive for alls>t.
(H5):H(p) is increasing for\(0\leq p\leq \frac {1}{2}\) and decreasing for\(\frac {1}{2}\leq p\leq 1\). If\(\frac {1}{x}+\frac {1}{n}\leq \frac 12\), then the claim is trivially true (since then the difference is negative). Assume therefore that\(\frac {1}{x}+\frac {1}{n}> \frac 12\). Under this assumption,\(H(\frac {1}{x})\) increases and\(H(\frac {1}{x}+\frac {1}{n})\) decreases asx tends to 2. Thus,\(H(\frac {1}{x})-H(\frac {1}{x}+\frac {1}{n})\) increases asx tends to 2 and, hence,
Inserting into the definition ofH gives
Since (n+2)/(n−2) is decreasing forn ≥ 3, it follows that\(\log ((n+2)/\)\((n-2))\leq \log (5)\). Furthermore,\((n^{2}-4)/(4n^{2})\leq \frac {1}{4}\) for alln ≥ 3, and so\(\frac {1}{2}\log \left ((n^{2}-4)/(4n^{2})\right )+1\leq 0\). We conclude that, for alln ≥ 3,
Combining (3) and (4) proves (H5). □
1.3A.3 Binomial Coefficients
The following proposition is a collection of simple facts about the binomial coefficient that will be used in AppendicesAA.4 andAA.5.
Proposition 2
Let\(a,b,c\in \mathbb {N}\).
Proof
First, we prove(B1):
(B2) follows directly from(B1).
To prove(B3), we calculate the two fractions separately:
□
1.4A.4 Approximating the Advice Complexity Bounds forminASG
The following lemma is used for proving Theorems 3–5.
Lemma 17
For c>1 and n ≥ 3,
and
Proof
We prove the upper and lower bounds separately.Upper bound: Fixn,c. By Lemma 1,
Note that\(1+\ln \left (\begin {array}{c} \lfloor {ct}\rfloor \\ t\end {array}\right )\leq n\)since we consider only ⌊ct⌋<n. This proves (7). Now, taking the logarithm on both sides gives
Above, we have increased ⌊ct⌋ to ⌈ct⌉ in the binomial coefficient (at the price of an additive term of\(\log n\)). This is done since it will later be convenient to use thatct≤⌈ct⌉. Using Lemma 16, we get that
and therefore
Define
Combining (9) and (10) shows that
The functionM is smooth. For any given input lengthn, we can determine the value oft maximizingM(n,t) using calculus. In order to simplify the notation for these calculations, define
and note that
We want to determine those values oft for which\(\frac {d}{dt}M(n,t)=0\):
Note that\(\frac {d^{2}}{dt^{2}}M(n,t)=H^{\prime \prime }(\frac {t}{n})/n<0\) for all values oft, by(H3). Thus,
The value of\(M(n, \frac {n}{x})\) can be calculated as follows:
Combining (11), (13), and (14), we conclude that
Lower Bound: By Lemma 1,
This proves (5). In order to prove (6), first note that by Lemma 15,
Thus, for\(c \geq \frac {n}{2}\), the righthand side of (6) is negative, and hence, the inequality is trivially true.
Assume now that\(c < \frac {n}{2}\). We will determine an integer value oft such that\(\left (\begin {array}{c} n \\ t\end {array}\right )/\left (\begin {array}{c} \lfloor {ct}\rfloor \\ t\end {array}\right )\) becomes sufficiently large. First, we use Lemma 16:
It is possible thatt=⌊ct⌋, but this is fine sinceH(1)=0. Using(H4), we see that
Thus,
Let\(t^{\prime }=\frac {n}{x}\). We know thatM(n,t) attains its maximum value when\(t=t^{\prime }\). Sincec>1, it is clear thatx>c and hence\(t^{\prime }<\frac {n}{c}\). It follows that\(\lfloor {ct^{\prime }}\rfloor <n\). However,\(t^{\prime }\) might not be an integer. In what follows, we will first argue that\(\lfloor {c\lceil {t^{\prime }}\rceil }\rfloor <n\) and then that\(M(n,\lceil {t^{\prime }}\rceil )\) is close to\(M(n,t^{\prime })\). The desired lower bound will then follow by setting\(t=\lceil {t^{\prime }}\rceil \).
Using calculus, it can be verified that, forc>1,x/c is increasing inc. Hence,
Thus,c≤x/2, and hence,
Note that\(\frac {d}{dt}M(n,t)<0\) for\(t>t^{\prime }\), so\(M(n,\lceil {t^{\prime }}\rceil )\geq M(n,t^{\prime }+1)\). Combining this observation with (H2) and (H5), we get that
By choosing\(t=\lceil {t^{\prime }}\rceil \) in the\(\max \), we conclude that
□
The following lemma is used for proving Theorem 10.
Lemma 18
If c is an integer-valued function of n and c>1, it holds that
Proof
Assume thatc is an integer-valued function ofn, thatc>1 and thatct<n. It follows that
Let\(t=\lfloor {\frac {n}{ec}}\rfloor \). Then
Since
this proves the lemma by choosing\(t=\lfloor {\frac {n}{ec}}\rfloor \). □
1.5A.5 Approximating the Advice Complexity Bounds formaxASG
Lemma 20 of this section is used for Theorems 6–8. In proving Lemma 20, the following lemma will be useful.
Lemma 19
For all n,c, it holds that
On the other hand, it also holds that
Proof
Let
In order to prove the upper bound, we show thatfn,c(⌊u/c⌋) ≥gn,c(u)/n, for any integeru, 0<u<n. Note that ⌊u/c⌋<u, sincec>1.
By(B1), the second last inequality is actually an equality, unlessu/c is an integer.
In order to prove the lower bound, we will show thatgn,c(⌈ct⌉) ≥fn,c(t)/n, for any integert with ⌊ct⌋<n. Note thatt<⌈ct⌉, sincec>1.
□
Lemma 20
Let c>1 and n ≥ 3. It holds that
Furthermore,
Proof
We prove the lower bound first.
We now prove the upper bound.
□
Rights and permissions
About this article
Cite this article
Boyar, J., Favrholdt, L.M., Kudahl, C.et al. The Advice Complexity of a Class of Hard Online Problems.Theory Comput Syst61, 1128–1177 (2017). https://doi.org/10.1007/s00224-016-9688-y
Published:
Issue Date:
Share this article
Anyone you share the following link with will be able to read this content:
Sorry, a shareable link is not currently available for this article.
Provided by the Springer Nature SharedIt content-sharing initiative