Movatterモバイル変換


[0]ホーム

URL:


Skip to main content
Springer Nature Link
Log in

Mechanical Stimulation Promotes Osteogenic Differentiation of Human Bone Marrow Stromal Cells on 3-D Partially Demineralized Bone ScaffoldsIn Vitro

  • Published:
Calcified Tissue International Aims and scope Submit manuscript

Abstract

Bone is a dynamic tissue that is able to sense and adapt to mechanical stimuli by modulating its mass, geometry, and structure. Bone marrow stromal cells (BMSCs) are known to play an integral part in bone formation by providing an osteoprogenitor cell source capable of differentiating into mature osteoblasts in response to mechanical stresses. Characteristics of thein vivo bone environment including the three dimensional (3-D) lacunocanalicular structure and extracellular matrix composition have previously been shown to play major roles in influencing mechanotransduction processes within bone cells. To more accurately model this phenomenonin vitro, we cultured human BMSCs on 3-D, partially demineralized bone scaffolds in the presence of four-point bending loads within a novel bioreactor. The effect of mechanical loading and dexamethasone concentration on BMSC osteogenic differentiation and mineralized matrix production was studied for 8 and 16 days of culture. Mechanical stimulation after 16 days with 10 nM dexamethasone promoted osteogenic differentiation of BMSCs by significantly elevating alkaline phosphatase activity as well as alkaline phosphatase and osteopontin transcript levels over static controls. Mineralized matrix production also increased under these culture conditions. Dexamethasone concentration had a dramatic effect on the ability of mechanical stimulation to modulate these phenotypic and genotypic responses. These results provide increased insight into the role of mechanical stimulation on osteogenic differentiation of human BMSCsin vitro and may lead to improved strategies in bone tissue engineering.

This is a preview of subscription content,log in via an institution to check access.

Access this article

Log in via an institution

Subscribe and save

Springer+ Basic
¥17,985 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price includes VAT (Japan)

Instant access to the full article PDF.

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5

Similar content being viewed by others

References

  1. A Heinonen H Sievanen H Kyrolainen J Perttunen P Kannus (2001)ArticleTitleMineral mass, size, and estimated mechanical strength of triple jumpers’ lower limb.Bone29 279–285OccurrenceHandle10.1016/S8756-3282(01)00574-9OccurrenceHandle1:STN:280:DC%2BD3MrgvFynsw%3D%3DOccurrenceHandle11557373

    Article CAS PubMed  Google Scholar 

  2. E Tanck J Homminga GH LentheParticlevan R Huiskes (2001)ArticleTitleIncrease in bone volume fraction precedes architectural adaptation in growing bone.Bone28 650–654OccurrenceHandle10.1016/S8756-3282(01)00464-1OccurrenceHandle1:STN:280:DC%2BD3MzmsFSgtQ%3D%3DOccurrenceHandle11425654

    Article CAS PubMed  Google Scholar 

  3. DB Burr C Milgrom D Fyhrie M Forwood M Nyskaet al. (1996)ArticleTitleIn vivo measurement of human tibial strains during vigorous activity.Bone18 405–410OccurrenceHandle10.1016/8756-3282(96)00028-2OccurrenceHandle1:STN:280:BymA3Mbhsl0%3DOccurrenceHandle8739897

    Article CAS PubMed  Google Scholar 

  4. L Wang SP Fritton SC Cowin S Weinbaum (1999)ArticleTitleFluid pressure relaxation depends upon osteonal microstructure: modeling an oscillatory bending experiment.J Biomech32 663–672OccurrenceHandle10.1016/S0021-9290(99)00059-7OccurrenceHandle1:STN:280:DyaK1MzisF2nsg%3D%3DOccurrenceHandle10400353

    Article CAS PubMed  Google Scholar 

  5. ML Knothe Tate R Steck MR Forwood P Niederer (2000)ArticleTitleIn vivo demonstration of load-induced fluid flow in the rat tibia and its potential implications for processes associated with functional adaptation.J Exp Biol203 2737–2745

    Google Scholar 

  6. LA MacGinitie GD Stanely WA Bieber DD Wu (1997)ArticleTitleBone streaming potentials and currents depend on anatomical structure and loading orientation.J Biomech30 1133–1139OccurrenceHandle10.1016/S0021-9290(97)85605-9OccurrenceHandle1:STN:280:DyaK1c7hslCqtQ%3D%3DOccurrenceHandle9456381

    Article CAS PubMed  Google Scholar 

  7. BR Beck YX Qin KJ McLeod MW Otter (2002)ArticleTitleOn the relationship between streaming potential and strain in anin vivo bone preparation.Calcif Tissue Int71 335–343

    Google Scholar 

  8. J Klein-Nulend CM Semeins EH Burger (1996)ArticleTitleProstaglandin mediated modulation of transforming growth factor-metabolism in primary mouse osteoblastic cellsin vitro.J Cell Physiol168 1–7OccurrenceHandle10.1002/(SICI)1097-4652(199607)168:1<1::AID-JCP1>3.0.CO;2-TOccurrenceHandle1:CAS:528:DyaK28XjvVSqu7o%3DOccurrenceHandle8647903

    Article CAS PubMed  Google Scholar 

  9. Q Wang S Zhong J Ouyang L Jiang Z Zhanget al. (1998)ArticleTitleOsteogenesis of electrically stimulated bone cells mediated in part by calcium ions.Clin Orthop348 259–268OccurrenceHandle9553560

    PubMed  Google Scholar 

  10. R Smalt FT Mitchell RL Howard TJ Chambers (1997)ArticleTitleInduction of NO and prostaglandin E2 in osteoblasts by wall-shear stress but not mechanical strain.Am J Physiol273 751–758

    Google Scholar 

  11. M Hartig U Joos HP Wiesmann (2000)ArticleTitleCapacitively coupled electric fields accelerate proliferation of osteoblast-like primary cells and increase bone extracellular matrix formationin vitro.Eur Biophys J29 499–506OccurrenceHandle10.1007/s002490000100OccurrenceHandle1:CAS:528:DC%2BD3cXosVOls7s%3DOccurrenceHandle11156291

    Article CAS PubMed  Google Scholar 

  12. CD Toma S Ashkar ML Gray JL Schaffer LC Gerstenfeld (1997)ArticleTitleSignal transduction of mechanical stimuli is dependent on microfilament integrity: identification of osteopontin as a mechanically induced gene in osteoblasts.J Bone Miner Res12 1626–1636OccurrenceHandle1:CAS:528:DyaK2sXmvVSkt7k%3DOccurrenceHandle9333123

    CAS PubMed  Google Scholar 

  13. D Murray N Rushton (1990)ArticleTitleThe effect of strain on bone cell prostaglandin E2 release: a new experimental method.Calcif Tissue Int47 35–39

    Google Scholar 

  14. C Neidlinger-Wilke H Wilke L Claes (1994)ArticleTitleCyclic stretching of human osteoblasts affects proliferation and metabolism: a new experimental method and its applications.J Orthop Res12 70–78OccurrenceHandle1:STN:280:ByuC2Mjnt1Y%3DOccurrenceHandle8113944

    CAS PubMed  Google Scholar 

  15. C Brighton B Strafford S Gross D Leatherwood J Williamset al. (1991)ArticleTitleThe proliferative and synthetic response of isolated calvarial bone cells of rats to cyclic biaxial mechanical strain.J Bone Joint Surg73 320–331OccurrenceHandle1:STN:280:By6C287mtlw%3DOccurrenceHandle1848246

    CAS PubMed  Google Scholar 

  16. H Glantschnig F Varga M Rumpler K Klaushofer (1996)ArticleTitleProstacyclin (PGI2): a potential mediator of c-fos expression induced by hydrostatic pressure in osteoblastic cells.Eur J Clin Invest26 544–548OccurrenceHandle10.1046/j.1365-2362.1996.165312.xOccurrenceHandle1:CAS:528:DyaK28Xltlaiu7Y%3DOccurrenceHandle8864415

    Article CAS PubMed  Google Scholar 

  17. J Klein-Nulend J Roelofsen C Semeins A Bronckers E Burger (1997)ArticleTitleMechanical stimulation of osteopontin mRNA expression and synthesis in bone cell cultures.J Cell Physiol170 174–181OccurrenceHandle10.1002/(SICI)1097-4652(199702)170:2<174::AID-JCP9>3.0.CO;2-LOccurrenceHandle1:CAS:528:DyaK2sXhtVeltro%3DOccurrenceHandle9009146

    Article CAS PubMed  Google Scholar 

  18. I Owan D Burr C Turner J Qiu Y Tuet al. (1997)ArticleTitleMechanotransduction in bone: osteoblasts are more responsive to fluid forces than mechanical strain.Am J Physiol273 810–815

    Google Scholar 

  19. K Sakai M Mohtai Y Iwamoto (1998)ArticleTitleFluid shear stress increases transforming growth factor beta 1 expression in human osteoblast-like cells: modulation by cation channel blockades.Calcif Tissue Int63 515–520OccurrenceHandle10.1007/s002239900567OccurrenceHandle9817947

    Article PubMed  Google Scholar 

  20. I Westbroek NE Ajubi MJ Albas CM Semeins J Klein-Nulendet al. (2000)ArticleTitleDifferential stimulation of prostaglandin G/H synthase-2 in osteocytes and other osteogenic cells by pulsating fluid flow.Biochem Biophys Res Commun268 414–419OccurrenceHandle10.1006/bbrc.2000.2154OccurrenceHandle1:CAS:528:DC%2BD3cXhtFGjt7s%3DOccurrenceHandle10679219

    Article CAS PubMed  Google Scholar 

  21. EH Burger J Klein-Nulend (1999)ArticleTitleMechanotransduction in bone—role of the lacuno-canalicular network.FASEB J13 S101–112OccurrenceHandle1:CAS:528:DyaK1MXjtFGku7c%3D

    CAS  Google Scholar 

  22. VI Sikavitsas JS Temenoff AG Mikos (2001)ArticleTitleBiomaterials and bone mechanotransduction.Biomaterials22 2581–2593OccurrenceHandle10.1016/S0142-9612(01)00002-3OccurrenceHandle1:CAS:528:DC%2BD3MXlsFymu7s%3DOccurrenceHandle11519777

    Article CAS PubMed  Google Scholar 

  23. RS Carvalho JL Schaffer LC Gerstenfeld (1998)ArticleTitleOsteoblasts induce osteopontin expression in response to attachment on fibronectin: demonstration of a common role for integrin receptors in the signal transduction processes of cell attachment and mechanical stimulation.J Cell Biochem70 376–390OccurrenceHandle10.1002/(SICI)1097-4644(19980901)70:3<376::AID-JCB11>3.0.CO;2-JOccurrenceHandle1:CAS:528:DyaK1cXkvFCqsLY%3DOccurrenceHandle9706875

    Article CAS PubMed  Google Scholar 

  24. T Davisson S Kunig A Chen R Sah A Ratcliffe (2002)ArticleTitleStatic and dynamic compression modulate matrix metabolism in tissue engineered cartilage.J Orthop Res20 842–848OccurrenceHandle10.1016/S0736-0266(01)00160-7OccurrenceHandle1:CAS:528:DC%2BD38XltlertLg%3DOccurrenceHandle12168676

    Article CAS PubMed  Google Scholar 

  25. GH Altman RL Horan I Martin J Farhadi PR Starket al. (2002)ArticleTitleCell differentiation by mechanical stress.FASEB J16 270–272OccurrenceHandle1:CAS:528:DC%2BD38XhsVCjsb8%3DOccurrenceHandle11772952

    CAS PubMed  Google Scholar 

  26. BS Kim DJ Mooney (2000)ArticleTitleScaffolds for engineering smooth muscle under cyclic mechanical strain conditions.J Biomech Eng122 210–215OccurrenceHandle10.1115/1.429651OccurrenceHandle1:STN:280:DC%2BD3M%2Fkt1Wmsw%3D%3DOccurrenceHandle10923287

    Article CAS PubMed  Google Scholar 

  27. WH Zimmermann K Schneiderbanger P Schubert M Didie F Munzelet al. (2002)ArticleTitleTissue engineering of a differentiated cardiac muscle construct.Circ Res90 223–230OccurrenceHandle10.1161/hh0202.103644OccurrenceHandle1:CAS:528:DC%2BD38Xhtl2lsro%3DOccurrenceHandle11834716

    Article CAS PubMed  Google Scholar 

  28. K Tang G Dang Z Guo (2002)ArticleTitleThe effects of intermittent hydromechanics on the differentiation and function of bone marrow stromal derived osteoblasts in porous calcium phosphate ceramics.Zhonghua Yi Xue Za Zhi82 665–668OccurrenceHandle1:CAS:528:DC%2BD38XptFSgsL8%3DOccurrenceHandle12133462

    CAS PubMed  Google Scholar 

  29. Y Yang JL Magnay L Cooling HA El (2002)ArticleTitleDevelopment of a “mechano-active” scaffold for tissue engineering.Biomaterials23 2119–2126OccurrenceHandle10.1016/S0142-9612(01)00342-8OccurrenceHandle1:CAS:528:DC%2BD38XhvVWhs7Y%3DOccurrenceHandle11962652

    Article CAS PubMed  Google Scholar 

  30. SE Haynesworth J Goshima VM Goldberg AI Caplan (1992)ArticleTitleCharacterization of cells with osteogenic potential from human marrow.Bone13 81–88OccurrenceHandle1:STN:280:By2B2Mngs1Y%3DOccurrenceHandle1581112

    CAS PubMed  Google Scholar 

  31. DJ Prockop (1997)ArticleTitleMarrow stromal cells as stem cells for nonhematopietic tissues.Science276 71–74OccurrenceHandle1:CAS:528:DyaK2sXitlyqt7g%3DOccurrenceHandle9082988

    CAS PubMed  Google Scholar 

  32. AI Caplan DJ Fink T Goto AE Linton RG Younget al. (.) Mesenchymal stem cells and tissue repair. The anterior cruciate ligament: current and future concepts Raven Press N.Y.

    Google Scholar 

  33. JN Beresford JH Bennett C Devlin PS Leboy ME Owen (1992)ArticleTitleEvidence for an inverse relationship between the differentiation of adipocytic and osteogenic cells in rat marrow.J Cell Sci102 341–351OccurrenceHandle1:CAS:528:DyaK38XlsVekt7w%3DOccurrenceHandle1400636

    CAS PubMed  Google Scholar 

  34. S Wakitani T Goto SJ Pineda RG Young JM Mansouret al. (1994)ArticleTitleMesenchymal cell-based repair of large, full-thickness defects of articular cartilage.J Bone Joint Surg76 579–592OccurrenceHandle1:STN:280:ByuB3c7itF0%3DOccurrenceHandle8150826

    CAS PubMed  Google Scholar 

  35. B Seshi S Kumar D Sellers (2000)ArticleTitleHuman bone marrow stromal cell: coexpression of markers specific for multiple mesenchymal cell lineages.Blood Cells Mol Dis26 234–246OccurrenceHandle10.1006/bcmd.2000.0301OccurrenceHandle1:CAS:528:DC%2BD3cXlslCqtbk%3DOccurrenceHandle10950944

    Article CAS PubMed  Google Scholar 

  36. P Bianco P Gehron Robey (2000)ArticleTitleMarrow stromal stem cells.J Clin Invest105 1663–1668OccurrenceHandle1:CAS:528:DC%2BD3cXkt1Wqs74%3DOccurrenceHandle10862779

    CAS PubMed  Google Scholar 

  37. GP Thomas AJ el Haj (1996)ArticleTitleBone marrow stromal cells are load responsivein vitro.Calcif Tissue Int58 101–108

    Google Scholar 

  38. T Yoshikawa SA Peel JR Gladstone JE Davies (1997)ArticleTitleBiochemical analysis of the response in rat bone marrow cell cultures to mechanical stimulation.Biomed Mater Eng7 369–377

    Google Scholar 

  39. GN Bancroft VI Sikavitsas J DolderParticlevan den TL Sheffield CG Ambroseet al. (2002)ArticleTitleFluid flow increases mineralized matrix deposition in 3D perfusion culture of marrow stromal osteoblasts in a dose-dependent manner.Proc Natl Acad Sci U S A99 12600–12605OccurrenceHandle10.1073/pnas.202296599OccurrenceHandle1:CAS:528:DC%2BD38XnvFGiu7g%3DOccurrenceHandle12242339

    Article CAS PubMed  Google Scholar 

  40. M Wozniak A Fausto CP Carron DM Meyer KA Hruska (2000)ArticleTitleMechanically strained cells of the osteoblast lineage organize their extracellular matrix through unique sites of alphavbeta3-integrin expression.J Bone Miner Res15 1731–1745OccurrenceHandle1:CAS:528:DC%2BD3cXmsF2mtL4%3DOccurrenceHandle10976993

    CAS PubMed  Google Scholar 

  41. JR Mauney J Blumberg M Pirun V Volloch G Vunjak-Novakovicet al. (2003)ArticleTitleOsteogenic differentiation of human bone marrow stromal cells on partially demineralized bone scaffoldsin vitro.Tissue Eng00 00

    Google Scholar 

  42. CH Turner MP Akhter DM Raab DB Kimmel RR Recker (1991)ArticleTitleA noninvasive,in vivo model for studying strain adaptive bone modeling.Bone12 73–79OccurrenceHandle1:STN:280:By6B1M7ltF0%3DOccurrenceHandle2064843

    CAS PubMed  Google Scholar 

  43. MP Akhter DM Raab CH Turner DB Kimmel RR Recker (1992)ArticleTitleCharacterization ofin vivo strain in the rat tibia during external application of a four-point bending load.J Biomech25 1241–1246OccurrenceHandle1:STN:280:ByyD3MnhvVU%3DOccurrenceHandle1400526

    CAS PubMed  Google Scholar 

  44. DM Cullen RT Smith MP Akhter (2001)ArticleTitleBone-loading response varies with strain magnitude and cycle number.J Appl Physiol91 1971–1976

    Google Scholar 

  45. RR Miles CH Turner R Santerre Y Tu P McClellandet al. (1998)ArticleTitleAnalysis of differential gene expression in rat tibia after an osteogenic stimulusin vivo: mechanical loading regulates osteopontin and myeloperoxidase.J Cell Biochem68 355–365OccurrenceHandle10.1002/(SICI)1097-4644(19980301)68:3<355::AID-JCB6>3.0.CO;2-TOccurrenceHandle1:CAS:528:DyaK1cXosVWitA%3D%3DOccurrenceHandle9518261

    Article CAS PubMed  Google Scholar 

  46. R Rosenthal J Folkman J Glowacki (1999)ArticleTitleDemineralized bone implants for nonunion fractures, bone cysts, and fibrous lesions.Clin Orthop364 61–69OccurrenceHandle10.1097/00003086-199907000-00009OccurrenceHandle10416393

    Article PubMed  Google Scholar 

  47. G Vunjak-Novakovic B Obradovic I Martin PM Bursac R Langeret al. (1998)ArticleTitleDynamic cell seeding of polymer scaffolds for cartilage tissue engineering.Biotechnol Prog14 193–202OccurrenceHandle10.1021/bp970120jOccurrenceHandle1:CAS:528:DyaK1cXhs1Grsrg%3DOccurrenceHandle9548769

    Article CAS PubMed  Google Scholar 

  48. Gere JM (1990) Mechanics of materials. PWS-KENT Pub. Co, Boston.

  49. N Jaiswal SE Haynesworth AI Caplan SP Bruder (1997)ArticleTitleOsteogenic differentiation of purified, culture-expanded human mesenchymal stem cellsin vitro.J Cell Biochem64 295–312OccurrenceHandle1:CAS:528:DyaK2sXpt1Kqsw%3D%3DOccurrenceHandle9027589

    CAS PubMed  Google Scholar 

  50. MR Forwood MB Bennett AR Blowers RL Nadorfi (1998)ArticleTitleModification of thein vivo four-point loading model for studying mechanically induced bone adaptation.Bone23 307–310OccurrenceHandle10.1016/S8756-3282(98)00090-8OccurrenceHandle1:STN:280:DyaK1cvgsleksQ%3D%3DOccurrenceHandle9737355

    Article CAS PubMed  Google Scholar 

  51. A Sabokbar PJ Millett B Myer N Rushton (1994)ArticleTitleA rapid, quantitative assay for measuring alkaline phosphatase activity in osteoblastic cellsin vitro.Bone Miner27 57–67OccurrenceHandle1:CAS:528:DyaK2MXhsVSkt78%3DOccurrenceHandle7849547

    CAS PubMed  Google Scholar 

  52. I Martin M Jakob D Schafer W Dick G Spagnoliet al. (2001)ArticleTitleQuantitative analysis of gene expression in human articular cartilage from normal and osteoarthritic joints.Osteoarthritis Cartilage9 112–118OccurrenceHandle10.1053/joca.2000.0366OccurrenceHandle1:STN:280:DC%2BD3M3lvFGntQ%3D%3DOccurrenceHandle11237658

    Article CAS PubMed  Google Scholar 

  53. N Sato Y Takahashi S Asano (0000)ArticleTitlePreferential usage of bone-type leader sequence for the transcripts of liver/bone/kidney-type alkaline phosphatase gene in neutrophilic granulocytes.Blood83 1093–1994

    Google Scholar 

  54. S Pri-Chen S Pitaru F Lokiec N Savion (1998)ArticleTitleBasic fibroblastic growth factor enhances the growth and expression of the osteogenic phenotpe of dexamethasone-treated human bone marrow-derived bone-like cells in culture.Bone23 111–117OccurrenceHandle10.1016/S8756-3282(98)00087-8OccurrenceHandle1:CAS:528:DyaK1cXlsVKgtbk%3DOccurrenceHandle9701469

    Article CAS PubMed  Google Scholar 

  55. EA Botchwey SR Pollack EM Levine CT Laurencin (2001)ArticleTitleBone tissue engineering in a rotating bioreactor using a microcarrier matrix system.J Biomed Mater Res55 242–253OccurrenceHandle10.1002/1097-4636(200105)55:2<242::AID-JBM1011>3.3.CO;2-4OccurrenceHandle1:CAS:528:DC%2BD3MXhs1OmtrY%3DOccurrenceHandle11255176

    Article CAS PubMed  Google Scholar 

  56. PV Bodine SK Vernon BS Komm (1996)ArticleTitleEstablishment and hormonal regulation of a conditionally transformed preosteocytic cell line from adult human bone.Endocrinology137 4592–4604OccurrenceHandle1:CAS:528:DyaK28Xms1Cqt7c%3DOccurrenceHandle8895322

    CAS PubMed  Google Scholar 

  57. CH Turner I Owan T Alvey J Hulman JM Hock (1998)ArticleTitleRecruitment and proliferative responses of osteoblasts after mechanical loadingin vivo determined using sustained-release bromodeoxyuridine.Bone22 463–469OccurrenceHandle10.1016/S8756-3282(98)00041-6OccurrenceHandle1:STN:280:DyaK1c3mtFCjtA%3D%3DOccurrenceHandle9600779

    Article CAS PubMed  Google Scholar 

  58. PJ Kostenuik BP Halloran ER Morey-Holton DD Bikle (1997)ArticleTitleSkeletal unloading inhibits thein vitro proliferation and differentiation of rat osteoprogenitor cells.Am J Physiol273 1133–1139

    Google Scholar 

  59. R Zhang SC Supowit GL Klein Z Lu MD Christensenet al. (1995)ArticleTitleRat tail suspension reduces messenger RNA level for growth factors and osteopontin and decreases the osteoblastic differentiation of bone marrow stromal cells.J Bone Miner Res10 415–423OccurrenceHandle1:CAS:528:DyaK2MXmvVWnsLo%3DOccurrenceHandle7785463

    CAS PubMed  Google Scholar 

  60. S Keila S Pitaru A Grosskopf M Weinreb (1994)ArticleTitleBone marrow from mechanically unloaded rat bones expresses reduced osteogenic capacityin vitro.J Bone Miner Res9 321–327OccurrenceHandle1:STN:280:ByuB2cbksVY%3DOccurrenceHandle8191925

    CAS PubMed  Google Scholar 

  61. DM Raab-Cullen MP Akhter DB Kimmel RR Recker (1994)ArticleTitlePeriosteal bone formation stimulated by externally induced bending strains.J Bone Miner Res9 1143–1152OccurrenceHandle1:STN:280:ByqD28jgtFc%3DOccurrenceHandle7976496

    CAS PubMed  Google Scholar 

  62. CH Turner MR Forwood MW Otter (1994)ArticleTitleMechanotransduction in bone: do bone cells act as sensors of fluid flow?FASEB J8 875–878OccurrenceHandle1:STN:280:ByuA2M%2FhvVY%3DOccurrenceHandle8070637

    CAS PubMed  Google Scholar 

  63. AG Robling DB Burr CH Turner (2001)ArticleTitleRecovery periods restore mechanosensitivity to dynamically loaded bone.J Exp Biol204 3389–3399

    Google Scholar 

  64. YF Hsieh T Wang CH Turner (1999)ArticleTitleViscoelastic response of the rat loading model: implications for studies of strain-adaptive bone formation.Bone25 379–382OccurrenceHandle10.1016/S8756-3282(99)00181-7OccurrenceHandle1:STN:280:DyaK1Mvitlegtw%3D%3DOccurrenceHandle10495144

    Article CAS PubMed  Google Scholar 

  65. HM Frost (1987)ArticleTitleBone “mass” and the “mechanostat”: a proposal.Anat Rec219 1–9OccurrenceHandle1:STN:280:BieD2srhslw%3DOccurrenceHandle3688455

    CAS PubMed  Google Scholar 

  66. Y Umemura T Ishiko T Yamauchi M Kurono S Mashiko (1997)ArticleTitleFive jumps per day increase bone mass and breaking force in rats.J Bone Miner Res12 1480–1485OccurrenceHandle1:STN:280:ByiH3s3ovVE%3DOccurrenceHandle9286765

    CAS PubMed  Google Scholar 

  67. LF Cooper CT Harris SP Bruder R Kowalski S Kadiyala (2001)ArticleTitleIncipient analysis of mesenchymal stem-cell-derived osteogenesis.J Dent Res80 314–320OccurrenceHandle1:CAS:528:DC%2BD3MXivVOmt70%3DOccurrenceHandle11269722

    CAS PubMed  Google Scholar 

  68. JE Aubin F Liu L Malaval AK Gupta (1995)ArticleTitleOsteoblast and chondroblast differentiation.Bone17 77S–83SOccurrenceHandle1:CAS:528:DyaK2MXns1OgsLc%3DOccurrenceHandle8579903

    CAS PubMed  Google Scholar 

  69. J Chen K Singh BB Mukherjee J Sodek (1993)ArticleTitleDevelopmental expression of osteopontin (OPN) mRNA in rat tissues: evidence for a role for OPN in bone formation and resorption.Matrix13 113–123OccurrenceHandle1:CAS:528:DyaK3sXhs1GrtLc%3DOccurrenceHandle8492741

    CAS PubMed  Google Scholar 

  70. RS Carvalho A Bumann JL Schaffer LC Gerstenfeld (2002)ArticleTitlePredominant integrin ligands expressed by osteoblasts show preferential regulation in response to both cell adhesion and mechanical perturbation.J Cell Biochem84 497–508OccurrenceHandle10.1002/jcb.10031.absOccurrenceHandle1:STN:280:DC%2BD38%2FosFClsw%3D%3DOccurrenceHandle11813255

    Article CAS PubMed  Google Scholar 

  71. JN Beresford CJ Joyner C Devlin JT Triffitt (1994)ArticleTitleThe effects of dexamethasone and 1,25-dihydroxyvitamin D3 on osteogenic differentiation of human marrow stromal cellsin vitro.Arch Oral Biol39 941–947OccurrenceHandle1:CAS:528:DyaK2MXjs12ks70%3DOccurrenceHandle7695507

    CAS PubMed  Google Scholar 

  72. O Frank M Heim M Jakob A Barbero D Schaferet al. (2002)ArticleTitleReal-time quantitative RT-PCR analysis of human bone marrow stromal cells during osteogenic differentiationin vitro.J Cell Biochem85 737–746OccurrenceHandle10.1002/jcb.10174OccurrenceHandle1:CAS:528:DC%2BD38Xjs1Whs78%3DOccurrenceHandle11968014

    Article CAS PubMed  Google Scholar 

  73. G Lisignoli N Zini G Remiddi A Piacentini A Puggioliet al. (2001)ArticleTitleBasic fibroblast growth factor enhancesin vitro mineralization of rat bone marrow stromal cells grown on non-woven hyaluronic acid based polymer scaffold.Biomaterials22 2095–2105OccurrenceHandle10.1016/S0142-9612(00)00398-7OccurrenceHandle1:CAS:528:DC%2BD3MXlt1Kmt7Y%3DOccurrenceHandle11432589

    Article CAS PubMed  Google Scholar 

  74. S Ozawa S Kasugai (1996)ArticleTitleEvaluation of implant materials (hydroxyapatite, glass-ceramics, titanium) in rat bone marrow stromal cell culture.Biomaterials17 23–29OccurrenceHandle10.1016/0142-9612(96)80751-4OccurrenceHandle1:CAS:528:DyaK28XhvFyjtw%3D%3DOccurrenceHandle8962943

    Article CAS PubMed  Google Scholar 

  75. Q Qiu M Sayer M Kawaja X Shen JE Davies (1998)ArticleTitleAttachment, morphology, and protein expression of rat marrow stromal cells cultured on charged substrate surfaces.J Biomed Mater Res42 117–127

    Google Scholar 

  76. J Becerra JA Andrades DC Ertl N Sorgente ME Nimni (1996)ArticleTitleDemineralized bone matrix mediates differentiation of bone marrow stromal cellsin vitro, effect of age of cell donor.J Bone Miner Res11 1703–1714OccurrenceHandle1:CAS:528:DyaK28XnsV2js7c%3DOccurrenceHandle8915778

    CAS PubMed  Google Scholar 

  77. NK Harakas (1984)ArticleTitleDemineralized bone-matrix-induced osteogenesis.Clin Orthop188 239–251OccurrenceHandle6380863

    PubMed  Google Scholar 

  78. MR Urist (1965)ArticleTitleBone formation by autoinduction.Science150 893–899OccurrenceHandle1:STN:280:CCmD3Mbjsl0%3DOccurrenceHandle5319761

    CAS PubMed  Google Scholar 

  79. MR Urist RF DeLange GA Finerman (1983)ArticleTitleBone cell differentiation and growth factors.Science220 680–686OccurrenceHandle1:CAS:528:DyaL3sXktlKgsLc%3DOccurrenceHandle6403986

    CAS PubMed  Google Scholar 

  80. E Solheim (1998)ArticleTitleOsteoinduction by demineralized bone.Int Orthop22 335–342OccurrenceHandle1:STN:280:DyaK1M7htleksg%3D%3DOccurrenceHandle9914941

    CAS PubMed  Google Scholar 

  81. JB Lian GS Stein (1992)ArticleTitleConcepts of osteoblast growth and differentiation: basis for modulation of bone cell development and tissue formation.Crit Rev Oral Biol Med3 269–305OccurrenceHandle1:STN:280:By2B3sbmtFM%3DOccurrenceHandle1571474

    CAS PubMed  Google Scholar 

  82. LV Harter KA Hruska RL Duncan (1995)ArticleTitleHuman osteoblast-like cells respond to mechanical stain with increased bone matrix protein production independent of hormonal regulation.Endocrinology136 528–535OccurrenceHandle1:CAS:528:DyaK2MXjtleitLw%3DOccurrenceHandle7530647

    CAS PubMed  Google Scholar 

  83. D Kaspar W Seidl C Neidlinger-Wilke A Ignatius L Claes (2000)ArticleTitleDynamic cell stretching increases human osteoblast proliferation and CICP synthesis but decreases osteocalcin synthesis and alkaline phosphatase activity.J Biomech33 45–51OccurrenceHandle10.1016/S0021-9290(99)00171-2OccurrenceHandle1:STN:280:DC%2BD3c%2FnsFKjug%3D%3DOccurrenceHandle10609517

    Article CAS PubMed  Google Scholar 

  84. CH Turner FM Pavalko (1998)ArticleTitleMechanotransduction and functional response of the skeleton to physical stress: the mechanisms and mechanics of bone adaptation.J Orthop Sci3 346–355OccurrenceHandle10.1007/s007760050064OccurrenceHandle1:STN:280:DyaK1M%2FjtVOltw%3D%3DOccurrenceHandle9811988

    Article CAS PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

  1. Tufts University, Departments of Biomedical Engineering and Chemical and Biological Engineering, Biotechnology Center, 4 Colby Street, Medford, Massachusetts, 02155, USA

    J. R. Mauney, S. Sjostorm, J. Blumberg, R. Horan, V. Volloch & D. L. Kaplan

  2. Tufts University, Department of Mechanical Engineering, 200 Anderson Hall, Medford, Massachusetts, 02155, USA

    J. P. O’Leary

  3. Massachusetts Institute of Technology, Harvard-MIT Division of Health Sciences and Technology, Cambridge, Massachusetts, 02139, USA

    G. Vunjak-Novakovic

Authors
  1. J. R. Mauney

    You can also search for this author inPubMed Google Scholar

  2. S. Sjostorm

    You can also search for this author inPubMed Google Scholar

  3. J. Blumberg

    You can also search for this author inPubMed Google Scholar

  4. R. Horan

    You can also search for this author inPubMed Google Scholar

  5. J. P. O’Leary

    You can also search for this author inPubMed Google Scholar

  6. G. Vunjak-Novakovic

    You can also search for this author inPubMed Google Scholar

  7. V. Volloch

    You can also search for this author inPubMed Google Scholar

  8. D. L. Kaplan

    You can also search for this author inPubMed Google Scholar

Corresponding author

Correspondence toD. L. Kaplan.

Rights and permissions

About this article

Cite this article

Mauney, J.R., Sjostorm, S., Blumberg, J.et al. Mechanical Stimulation Promotes Osteogenic Differentiation of Human Bone Marrow Stromal Cells on 3-D Partially Demineralized Bone ScaffoldsIn Vitro .Calcif Tissue Int74, 458–468 (2004). https://doi.org/10.1007/s00223-003-0104-7

Download citation

Keywords

Access this article

Subscribe and save

Springer+ Basic
¥17,985 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price includes VAT (Japan)

Instant access to the full article PDF.

Advertisement


[8]ページ先頭

©2009-2025 Movatter.jp