137Accesses
18Citations
Abstract
We consider a random walk on the support of an ergodic stationary simple point process on ℝd,d≥2, which satisfies a mixing condition w.r.t. the translations or has a strictly positive density uniformly on large enough cubes. Furthermore the point process is furnished with independent random bounded energy marks. The transition rates of the random walk decay exponentially in the jump distances and depend on the energies through a factor of the Boltzmann-type. This is an effective model for the phonon-induced hopping of electrons in disordered solids within the regime of strong Anderson localization. We show that the rescaled random walk converges to a Brownian motion whose diffusion coefficient is bounded below by Mott's law for the variable range hopping conductivity at zero frequency. The proof of the lower bound involves estimates for the supercritical regime of an associated site percolation problem.
This is a preview of subscription content,log in via an institution to check access.
Access this article
Subscribe and save
- Get 10 units per month
- Download Article/Chapter or eBook
- 1 Unit = 1 Article or 1 Chapter
- Cancel anytime
Buy Now
Price includes VAT (Japan)
Instant access to the full article PDF.
Similar content being viewed by others
References
Ambegoakar, V., Halperin, B.I., Langer, J.S.: Hopping Conductivity in Disordered Systems. Phys, RevB 4, 2612–2620 (1971)
Bellissard, J., Rebolledo, R., Spehner, D., von Waldenfels, W.: In preparation
Bellissard, J., Hermann, D., Zarrouati, M.: Hull of Aperiodic Solids and Gap Labelling Theorems. In: Directions in Mathematical Quasicrystals, M.B. Baake, R.V. Moody, eds., CRM Monograph Series, Volume13, Providence, RI: Amer. Math.Soc., (2000) 207–259
Billingsley, P.: Convergence of Probability Measures. New York: Wiley, 1968
Bolthausen, E., Sznitman, A.-S.: Ten lectures on random media. DMV Seminar32 Basel: Birkhäuser, 2002
Breiman, L.: Probability. Reading, MA: Addison–Wesley, 1953
Daley, D.J., Vere–Jones, D.: An Introduction to the Theory of Point Processes. New York: Springer, 1988
De Masi, A., Ferrari, P.A., Goldstein, S., Wick, W.D.: An Invariance Principle for Reversible Markov Processes. Applications to Random Motions in Random Environments. J. Stat. Phys.55, 787–855 (1989)
Efros, A.L., Shklovskii, B.I.: Coulomb gap and low temperature conductivity of disordered systems. J. Phys. C: Solid State Phys.8, L49–L51 (1975)
Faggionato, A., Martinelli, F.: Hydrodynamic limit of a disordered lattice gas. Probab. Theory Related Fields127, 535–608 (2003)
Franken, P., König, D., Arndt, U., Schmidt, V.: Queues and Point Processes. Berlin: Akadamie-Verlag, 1981
Grimmett, G.: Percolation. Second Edition, Grundlehren321, Berlin: Springer, 1999
Kipnis, C., Varadhan, S.R.S.: Central Limit Theorem for Additive Functionals of Reversible Markov Processes and Applications to Simple Exclusion. Commun. Math. Phys.104, 1–19 (1986)
Kallenberg, O.: Foundations of Modern Probability. Second Edition, New York: Springer-Verlag, 2001
Kirsch, W., Lenoble, O., Pastur, L.: On the Mott formula for the a.c. conductivity and binary correlators in the strong localization regime of disordered systems. J. Phys. A: Math. Gen.36, 12157–12180 (2003)
Ladieu, F., Bouchaud, J.-P.: Conductance statistics in small GaAs:Si wires at low temperatures: I. Theoretical analysis: truncated quantum fluctuations in insulating wires. J. Phys. I France3, 2311–2320 (1993)
Martinelli, F.: Lectures on Glauber dynamics for discrete spin models. Lecture Notes in Mathematics, Vol.1717, Berlin-Heidelberg-Newyork: Springer, 2000
Matthes, K., Kerstan, J., Mecke, J.: Infinitely Divisible Point Processes. Wiley Series in Probability and Mathematical Physics, Newyork: Wiley, 1978
Meester, R., Roy, R.: Continuum Percolation. Cambridge: Cambridge University Press, 1996
Miller, A., Abrahams, E.: Impurity Conduction at Low Concentrations. Phys. Rev.120, 745–755 (1960)
Minami, N.: Local fluctuation of the spectrum of a multidimensional Anderson tight binding model. Commun. Math. Phys.177, 709–725 (1996)
Mott, N.F.: J. Non-Crystal. Solids1, 1 (1968); N. F. Mott, Phil. Mag19, 835 (1969); Mott, N.F., Davis, E.A.: Electronic Processes in Non-Crystaline Materials. New York: Oxford University Press, 1979
Owhadi, H.: Approximation of the effective conductivity of ergodic media by periodization. Probab. Theory Related Fields125, 225–258, (2003)
Quastel, J.: Diffusion in Disordered Media. In: Funaki, T., Woyczinky, W., eds., Proceedings on stochastic method for nonlinear P.D.E., IMA volumes in Mathematics77, New York: Springer Verlag, 1995, pp. 65–79
Reed, M., Simon, B.: Methods of Modern Mathematical Physics I-IV. San Diego: Academic Press, 1980
Rosenblatt, M.: Markov Processes. Structure and Asymptotic Behavior. Grundlehren184, Berlin: Springer, 1971
Shklovskii, B., Efros, A.L.: Electronic Properties of Doped Semiconductors. Berlin: Springer, 1984
Spehner, D.: Contributions à la théorie du transport électronique dissipatif dans les solides apériodiques. PhD Thesis, Toulouse, 2000
Spohn, H.: Large Scale Dynamics of Interacting Particles. Berlin: Springer, 1991
Thorisson, H.: Coupling, Stationarity, and Regeneration. New York: Springer, 2000
Author information
Authors and Affiliations
Weierstrass Institut für Angewandte Analysis und Stochastic, 10117, Berlin, Germany
A. Faggionato
Institut für Mathematik, Technische Universität Berlin, 10623, Berlin, Germany
H. Schulz-Baldes
Fachbereich Physik, Universität Duisburg-Essen, 45117, Essen, Germany
D. Spehner
- A. Faggionato
You can also search for this author inPubMed Google Scholar
- H. Schulz-Baldes
You can also search for this author inPubMed Google Scholar
- D. Spehner
You can also search for this author inPubMed Google Scholar
Additional information
Communicated by M. Aizenman
Rights and permissions
About this article
Cite this article
Faggionato, A., Schulz-Baldes, H. & Spehner, D. Mott Law as Lower Bound for a Random Walk in a Random Environment.Commun. Math. Phys.263, 21–64 (2006). https://doi.org/10.1007/s00220-005-1492-5
Received:
Accepted:
Published:
Issue Date:
Share this article
Anyone you share the following link with will be able to read this content:
Sorry, a shareable link is not currently available for this article.
Provided by the Springer Nature SharedIt content-sharing initiative