Movatterモバイル変換


[0]ホーム

URL:


Skip to main content
Springer Nature Link
Log in

Analysis of a Stokes interface problem

  • Published:
Numerische Mathematik Aims and scope Submit manuscript

Abstract

We consider a stationary Stokes problem with a piecewise constant viscosity coefficient. For the variational formulation of this problem we prove a well-posedness result in which the constants are uniform with respect to the jump in the viscosity coefficient. We apply a standard discretization with a pair of LBB stable finite element spaces. The main result of the paper is an infsup result for the discrete problem that is uniform with respect to the jump in the viscosity coefficient. From this we derive a robust estimate for the discretization error. We prove that the mass matrix with respect to some suitable scalar product yields a robust preconditioner for the Schur complement. Results of numerical experiments are presented that illustrate this robustness property.

This is a preview of subscription content,log in via an institution to check access.

Access this article

Log in via an institution

Subscribe and save

Springer+
from ¥17,985 /Month
  • Starting from 10 chapters or articles per month
  • Access and download chapters and articles from more than 300k books and 2,500 journals
  • Cancel anytime
View plans

Buy Now

Price includes VAT (Japan)

Instant access to the full article PDF.

Similar content being viewed by others

Explore related subjects

Discover the latest articles, books and news in related subjects, suggested using machine learning.

References

  1. Babuska, I.: The finite element method for elliptic problems with discontinuous coefficients. Computing5, 2-7–213 (1970)

    Article MathSciNet  Google Scholar 

  2. Babuska, I., Caloz, C., Osborn, J.: Special finite element methods for a class of second order elliptic problems with rough coefficients. SIAM J. Numer. Anal.31, 945–981 (1994)

    Article MATH MathSciNet  Google Scholar 

  3. Bank, R.E., Welfert, B.D., and Yserentant, H.: A class of iterative methods for solving saddle point problems. Numer. Math.56, 645–666 (1990)

    Article MATH MathSciNet  Google Scholar 

  4. Bernardi, C., Verfürth, R.: Adaptive finite element methods for elliptic equations with non-smooth coefficients. Numer. Math.85, 579–608 (2000)

    Article MATH MathSciNet  Google Scholar 

  5. Brackbill, J.U., Kothe, D.B., Zemach, C.: A continuum method for modeling surface tension. J. Comput. Phys.100, 335–354 (1992)

    Article MATH MathSciNet  Google Scholar 

  6. Bramble, J.H., King, J.T.: A finite element method for interface problems in domains with smooth boundaries and interfaces. Advances in Comp. Math.6, 109–138 (1996)

    Article MATH MathSciNet  Google Scholar 

  7. Bramble, J.H., Pasciak, J.E., Vassilev, A.T.: Analysis of the inexact Uzawa algorithm for saddle point problems. SIAM J. Numer. Anal.34, 1072–1092 (1997)

    Article MATH MathSciNet  Google Scholar 

  8. Bramble, J.H.: Multigrid Methods. Pitman Research Notes in Mathematics, Vol. 294, John Wiley, New York, 1993

  9. Bramble, J.H., Pasciak, J.E., Wang, J., Xu, J.: Convergence estimates for multigrid algorithms without regularity assumptions. Math. Comp.57, 23–45 (1991)

    Article MATH MathSciNet  Google Scholar 

  10. Brezzi, F., Fortin, M.: Mixed and Hybrid Finite Element Methods. Springer, New York, 1991

  11. Ciarlet, P.G.: The Finit Element Method for Elliptic Problems. North-Holland, Amsterdam, 1978

  12. Ciarlet, P.G.: Basic Error Estimates for Elliptic Problems. In: P.G. Ciarlet, J.L. Lions (eds.) Handbook of Numerical Analysis, Vol. II. Elsevier Science, 1991, pp. 17–351

  13. Dautray, R., Lions, J.-L.: Mathematical Analysis and Numerical Methods for Science and Technology, Vol. 2: Functional and Variational Methods. Springer, Berlin, 1988

  14. Chang, Y.C., Hou, T.Y., Merriman, B., Osher, S.: Eulerian capturing methods based on a level set formulation for incompressible fluid interfaces. J. Comput. Phys.124, 449–464 (1996)

    Article MATH MathSciNet  Google Scholar 

  15. Chen, Z., Zou, J.: Finite element method and its convergence for elliptic and parabolic interfac problems. Numer. Math.79, 175–202 (1998)

    Article MATH MathSciNet  Google Scholar 

  16. Elman, H.C., Golub, G.H.: Inexact and preconditioned Uzawa algorithms for saddle point problems. SIAM J. Numer. Anal.31, 1645–1661 (1994)

    Article MATH MathSciNet  Google Scholar 

  17. Girault, V., Raviart, P.-A.: Finite Element Methods for Navier-Stokes Equations. Springer, Berlin, 1986

  18. Kondratiev, V.A., Oleinik, O.A.: Boundary-value problems for the systems of elasticity in unbounded domains. Korn's inequalities, Russian Math. Surveys43, 65–119 (1988)

    MATH  Google Scholar 

  19. Olshanskii, M.A., Reusken, A.: A Stokes Interface Problem: Stability, Finite Element Analysis and a Robust Solver. In: P. Neittaanmäki, et al. (eds.) Proc. of European Congress on Computational Methods in Applied Sciences and Engineering, ECCOMAS 2004, 2004

  20. Osher, S., Fedkiw, R.P.: Level set methods: An overview and some recent results. J. Comput. Phys.169, 463–502 (2001)

    Article MATH MathSciNet  Google Scholar 

  21. Petzoldt, M.: A posteriori error estimators for elliptic equations with discontinuous diffusion coefficients. Advances in Computational Mathematics16, 47–75 (2002)

    Article MATH MathSciNet  Google Scholar 

  22. Plum, M., Wieners, C.: Optimal a priori estimates for interface problems. Numer. Math.95, 735–759 (2003)

    Article MATH MathSciNet  Google Scholar 

  23. Powell, C., Silvester, D.: Black-box preconditioning for mixed formulation of self-adjoint elliptic PDEs. In: E. Bänsch (ed.) Challenges in Scientific Computing - CISC 2002. Lecture Notes in Computational Science and Engineering, Vol. 35, 2003, pp. 268–285

  24. Rusten, T., Winther, R.: A preconditioned iterative method for saddlepoint problems. SIAM J. Matrix Anal. Appl.13, 887–904 (1992)

    Article MATH MathSciNet  Google Scholar 

  25. Silvester, D., Wathen, A.: Fast iterative solution of stabilised stokes systems. part II: using general block preconditioners. SIAM J. Numer. Anal.31, 1352–1367 (1994)

    MATH MathSciNet  Google Scholar 

  26. Tornberg, A.-K., Engquist, B.: A finite element based level-set method for multiphase flow applications. Comput. Visual. Sci.3, 93–101 (2000)

    Article MATH  Google Scholar 

  27. Wathen, A.: Realistic eigenvalues bounds for the Galerkin mass matrix. IMA J. Numer. Anal.7, 449–457 (1987)

    MATH MathSciNet  Google Scholar 

  28. Yserentant, H.: Two preconditioners based on the multi-level splitting of finite element spaces. Numer. Math.58, 163–184 (1990)

    Article MATH MathSciNet  Google Scholar 

  29. Zulehner, W.: Analysis of iterative methods for saddle point problems: A unified approach. Math. Comp.71, 479–505 (2001)

    Article MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

  1. Department of Mechanics and Mathematics, Moscow State University, Moscow, 119899, Russia

    Maxim A. Olshanskii

  2. Institut für Geometrie und Praktische Mathematik, RWTH-Aachen, D-52056, Aachen, Germany

    Arnold Reusken

Authors
  1. Maxim A. Olshanskii
  2. Arnold Reusken

Corresponding author

Correspondence toArnold Reusken.

Additional information

This author was supported by the German Research Foundation through the guest program of SFB 540

Rights and permissions

About this article

Access this article

Subscribe and save

Springer+
from ¥17,985 /Month
  • Starting from 10 chapters or articles per month
  • Access and download chapters and articles from more than 300k books and 2,500 journals
  • Cancel anytime
View plans

Buy Now

Price includes VAT (Japan)

Instant access to the full article PDF.

Advertisement


[8]ページ先頭

©2009-2026 Movatter.jp