634Accesses
6Citations
Abstract
Dilated cardiomyopathy (DCM), clinically characterized by contractile dysfunction and ventricular chamber enlargement, is a heterogeneous heart disease leading to progressive systolic heart failure and sudden cardiac death. The etiology of the disease is multifactorial and involves genetic factors, viral infections, autoimmune phenomena, and toxic agents. Within the last two decades, a growing body of evidence has suggested that single-gene mutations play a pivotal role in the development of familial forms of dilated cardiomyopathies. Numerous genes encoding cytoskeletal, sarcomeric, and nuclear proteins have been linked to the pathogenesis of DCM, and most of the respective mutants disrupt the structural integrity of sarcomeres in cardiac myocytes. Frequently, point mutations in cytoskeletal proteins critically diminish force generation and interfere with mechanical transduction within the contractile apparatus of the myocardium, thereby ultimately leading to impaired systolic function. However, hitherto reported sarcomeric gene defects explain the etiology of the disease only in some families, leaving other forms of DCM subentities unresolved. Since one of the major factors in DCM pathogenesis involves autoimmune-mediated damage to cardiac tissue, candidate genes that are involved in controlling immune reactions have currently come into focus in genetic research. We and others have shown that a single-nucleotide polymorphism (SNP) in the gene encoding cytotoxic T-lymphocyte antigen 4 (CTLA4) is associated with the diagnosis of DCM. Cytotoxic T-lymphocyte antigen 4 is an inhibitory receptor molecule expressed on activated T lymphocytes, where it functions as an important negative regulator of T-cell activation by competing with the costimulatory CD28 receptor to bind to B7 receptors localized on the surface of antigen-presenting cells. The observed association between CTLA4 genotypes and DCM suggests that genetic factors contribute to both unbalanced immune responses in the myocardium and the development of left ventricular dysfunction. In this review, we will briefly discuss how these findings may stimulate the search for novel DCM-associated SNPs in human genes expressed in noncardiomyocytes.
Zusammenfassung
Die dilatative Kardiomyopathie (DCM), klinisch charakterisiert durch eine Größenzunahme der Ventrikel mit kontraktiler Dysfunktion, ist ein heterogenes Krankheitsbild, das zu progredienter systolischer Herzinsuffizienz und plötzlichem Herztod führt. Die Ätiologie der Erkrankung ist multifaktoriell und beinhaltet genetische Ursachen, virale Infektionen, Mechanismen der Autoimmunität gegen kardiale Antigene und toxische Agenzien. Innerhalb der letzten zwei Dekaden ergab sich eine Vielzahl von Hinweisen darauf, dass einzelne Genmutationen eine wichtige Rolle bei der Entstehung von familiären Formen dilatativer Kardiomyopathien spielen. Zahlreiche für zytoskelettale, sarkomerische oder nukleäre Proteine kodierende Gene wurden mit der Pathogenese der DCM in Verbindung gebracht. Die meisten der entsprechenden Mutationen zerstören die strukturelle Integrität des Sarkomers in Kardiomyozyten. Häufig beeinträchtigen Punktmutationen in zytoskelettalen Proteinen die Kraftentwicklung und behindern die mechanische Kraftweiterleitung im kontraktilen Apparat des Myokards mit der langfristigen Folge einer systolischen Funktionsstörung. Defekte in myokardial exprimierten Genen können allerdings nur in einem Teil der familiären Fälle hinreichend die Ätiologie begründen, während andere Fälle von dilatativen Kardiomyopathien unerklärt bleiben. Da ein wesentlicher Faktor für die Pathogenese der DCM ein autoimmunologisch vermittelter Myokardschaden sein kann, gerieten solche Kandidatengene zunehmend in den Mittelpunkt des Interesses, die an der Kontrolle der Immunantwort beteiligt sind. In zwei Arbeiten wurde ein Einzelnukleotidpolymorphismus (SNP) im zytotoxischen Lymphozytenantigen 4 (CTLA4) mit der Diagnose einer DCM in Verbindung gebracht. CTLA4 ist ein auf aktivierten Lymphozyten exprimiertes Rezeptormolekül mit inhibitorischer Wirkung, welches als negativer Regulator der T-Zell-Aktivierung mit dem kostimulatorischen CD28-Rezeptor um die Bindung an B7-Rezeptoren auf der Oberfläche von antigenpräsentierenden Zellen konkurriert. Die beobachtete Assoziation von Genotypen des CTLA4-Rezeptors und der DCM deutet auf den Einfluss genetischer Faktoren bei dysregulierten Immunantworten und der Entwicklung einer linksventrikulären Funktionsstörung hin. In diesem Übersichtsartikel wird diskutiert, wie diese Beobachtungen die Suche nach neuen DCM-assoziierten SNPs in humanen, nicht myokardial exprimierten Genen befördern könnten.
This is a preview of subscription content,log in via an institution to check access.
Access this article
Subscribe and save
- Get 10 units per month
- Download Article/Chapter or eBook
- 1 Unit = 1 Article or 1 Chapter
- Cancel anytime
Buy Now
Price includes VAT (Japan)
Instant access to the full article PDF.

Similar content being viewed by others
References
Mestroni L, Krajinovic M, Severini GM et al (1995) Molecular genetics of dilated cardiomyopathies. Eur Heart J 16(Suppl O):5–9
Chang AN, Potter JD (2005) Sarcomeric protein mutations in dilated cardiomyopathy. Heart Fail Rev 10:225–235
Watkins H, Ashrafian H, Redwood C (2011) Inherited cardiomyopathies. N Engl J Med 364:1643–1656
Jacoby D, McKenna WJ (2012) Genetics of inherited cardiomyopathy. Eur Heart J 33:296–304
Towbin JA, Hejtmancik JF, Brink P et al (1993) X-linked dilated cardiomyopathy. Molecular genetic evidence of linkage to the Duchenne muscular dystrophy (dystrophin) gene at the Xp21 locus. Circulation 87:1854–1865
Waldmüller S, Erdmann J, Binner P et al (2011) Novel correlations between the genotype and the phenotype of hypertrophic and dilated cardiomyopathy: results from the German Competence Network Heart Failure. Eur J Heart Fail 13:1185–1192
Morimoto S (2008) Sarcomeric proteins and inherited cardiomyopathies. Cardiovasc Res 77:659–666
Kimura A (2011) Contribution of genetic factors to the pathogenesis of dilated cardiomyopathy: the cause of dilated cardiomyopathy: genetic or acquired? (genetic-side). Circ J 75:1756–1765
Itoh-Satoh M, Hayashi T, Nishi H et al (2002) Titin mutations as the molecular basis for dilated cardiomyopathy. Biochem Biophys Res Commun 291:385–393
Knöll R, Hoshijima M, Hoffman HM et al (2002) The cardiac mechanical stretch sensor machinery involves a Z disc complex that is defective in a subset of human dilated cardiomyopathy. Cell 111:943–955
Herman DS, Lam L, Taylor MR et al (2012) Truncations of titin causing dilated cardiomyopathy. N Engl J Med 366:619–628
Haghighi K, Kolokathis F, Pater L et al (2003) Human phospholamban null results in lethal dilated cardiomyopathy revealing a critical difference between mouse and human. J Clin Invest 111:869–876
Schmitt JP, Kamisago M, Asahi M et al (2003) Dilated cardiomyopathy and heart failure caused by a mutation in phospholamban. Science 299:1410–1413
Kranias EG, Bers DM (2007) Calcium and cardiomyopathies. Subcell Biochem 45:523–537
Bione S, Maestrini E, Rivella S et al (1994) Identification of a novel X-linked gene responsible for Emery-Dreifuss muscular dystrophy. Nat Genet 8:323–327
Bonne G, Di Barletta MR, Varnous S et al (1999) Mutations in the gene encoding lamin A/C cause autosomal dominant Emery-Dreifuss muscular dystrophy. Nat Genet 21:285–288
Fatkin D, MacRae C, Sasaki T et al (1999) Missense mutations in the rod domain of the lamin A/C gene as causes of dilated cardiomyopathy and conduction-system disease. N Engl J Med 341:1715–1724
Funakoshi M, Tsuchiya Y, Arahata K (1999) Emerin and cardiomyopathy in Emery-Dreifuss muscular dystrophy. Neuromuscul Disord 9:108–114
Mounkes LC, Burke B, Stewart CL (2001) The A-type lamins: nuclear structural proteins as a focus for muscular dystrophy and cardiovascular diseases. Trends Cardiovasc Med 11:280–285
Nonen S, Okamoto H, Akino M et al (2005) No positive association between adrenergic receptor variants of α2cDel322-325, β1Ser49, β1Arg389 and the risk for heart failure in the Japanese population. Br J Clin Pharmacol 60:414–417
Leineweber K, Heusch G (2009) β1- and β2-adrenoceptor polymorphisms and cardiovascular diseases. Br J Pharmacol 158:61–69
Muthumala A, Drenos F, Elliott PM, Humphries SE (2008) Role of β-adrenergic receptor polymorphisms in heart failure: systematic review and meta-analysis. Eur J Heart Fail 10:3–13
Iwai C, Akita H, Shiga N et al (2002) Suppressive effect of the Gly389 allele of the β1-adrenergic receptor gene on the occurrence of ventricular tachycardia in dilated cardiomyopathy. Circ J 66:723–728
Forleo C, Sorrentino S, Guida P et al (2007) β1- and β2-Adrenergic receptor polymorphisms affect susceptibility to idiopathic dilated cardiomyopathy. J Cardiovasc Med (Hagerstown) 8:589–595
Du Preez J, Matolweni LO, Greenberg J et al (2008) The alpha 2C Del322-325 adrenergic receptor polymorphism is not associated with heart failure due to idiopathic dilated cardiomyopathy in black Africans. Cardiovasc J Afr 19:15–16
Paczkowska A, Szperl M, Małek Ł et al (2009) Polymorphisms of the β1- and β2-adrenergic receptors in Polish patients with idiopathic dilated cardiomyopathy. Kardiol Pol 67:235–241
Regitz-Zagrosek V, Hocher B, Bettmann M et al (2006) α2C-Adrenoceptor polymorphism is associated with improved event-free survival in patients with dilated cardiomyopathy. Eur Heart J 27:454–459
Esfandiarei M, McManus BM (2008) Molecular biology and pathogenesis of viral myocarditis. Annu Rev Pathol 3:127–155
Huang CH, Vallejo JG, Kollias G, Mann DL (2009) Role of the innate immune system in acute viral myocarditis. Basic Res Cardiol 104:228–237
Lv H, Havari E, Pinto S et al (2011) Impaired thymic tolerance to α-myosin directs autoimmunity to the heart in mice and humans. J Clin Invest 121:1561–1573
Metzger TC, Anderson MS (2011) Myocarditis: a defect in central immune tolerance? J Clin Invest 121:1251–1253
Tang D, Kang R, Coyne CB et al (2012) PAMPs and DAMPs: signal 0s that spur autophagy and immunity. Immunol Rev 249:158–175
Maier R, Krebs P, Ludewig B (2004) Immunopathological basis of virus-induced myocarditis. Clin Dev Immunol 11:1–5
Richer MJ, Horwitz MS (2009) The innate immune response: an important partner in shaping coxsackievirus-mediated autoimmunity. J Innate Immun 1:421–434
Mann DL (2011) The emerging role of innate immunity in the heart and vascular system: for whom the cell tolls. Circ Res 108:1133–1145
Yajima T (2011) Viral myocarditis: potential defense mechanisms within the cardiomyocyte against virus infection. Future Microbiol 6:551–566
Marchant DJ, Boyd JH et al (2012) Inflammation in myocardial diseases. Circ Res 110:126–144
Nindl V, Maier R, Ratering D et al (2012) Cooperation of Th1 and Th17 cells determines transition from autoimmune myocarditis to dilated cardiomyopathy. Eur J Immunol 42:2311–2321
Li HS, Ligons DL, Rose NR (2008) Genetic complexity of autoimmune myocarditis. Autoimmun Rev 7:168–173
Portig I, Sandmoeller A, Kreilinger S, Maisch B (2009) HLA-DQB1* polymorphism and associations with dilated cardiomyopathy, inflammatory dilated cardiomyopathy and myocarditis. Autoimmunity 42:33–40
Liu W, Li WM, Gao C et al (2005) Relationship of CTLA-4 exon 1 A49G polymorphism with sCTLA-4 and Th1/Th2 bias in idiopathic dilated cardiomyopathy (in Chinese) Zhonghua Yi Xue Za Zhi 85:3221–3224
Ruppert V, Meyer T, Struwe C et al (2010) Evidence for CTLA4 as a susceptibility gene for dilated cardiomyopathy. Eur J Hum Genet 18:694–699
Kristiansen OP, Larsen ZM, Pociot F (2000) CTLA-4 in autoimmune diseases—a general susceptibility gene to autoimmunity? Genes Immun 1:170–184
Gough SC, Walker LS, Sansom DM (2005) CTLA4 gene polymorphism and autoimmunity. Immunol Rev 204:102–115
Ueda H, Howson JM, Esposito L et al (2003) Association of the T-cell regulatory gene CTLA4 with susceptibility to autoimmune disease. Nature 423:506–511
Pentcheva-Hoang T, Egen JG, Wojnoonski K, Allison JP (2004) B7-1 and B7-2 selectively recruit CTLA-4 and CD28 to the immunological synapse. Immunity 21:401–413
Tang AL, Teijaro JR, Njau MN et al (2008) CTLA4 expression is an indicator and regulator of steady-state CD4+FoxP3+T cell homeostasis. J Immunol 181:1806–1813
Friedline RH, Brown DS, Nguyen H et al (2009) CD4+ regulatory T cells require CTLA-4 for the maintenance of systemic tolerance. J Exp Med 206:421–434
Ligers A, Teleshova N, Masterman T et al (2001) CTLA-4 gene expression is influenced by promoter and exon 1 polymorphisms. Genes Immun 2:145–152
Mäurer M, Loserth S, Kolb-Mäurer A et al (2002) A polymorphism in the human cytotoxic T-lymphocyte antigen 4 (CTLA4) gene (exon 1 +49) alters T-cell activation. Immunogenetics 54:1–8
Anjos S, Nguyen A, Ounissi-Benkalha H et al (2002) A common autoimmunity predisposing signal peptide variant of the cytotoxic T-lymphocyte antigen 4 results in inefficient glycosylation of the susceptibility allele. J Biol Chem 277:46478–46486
Tivol EA, Borriello F, Schweitzer AN et al (1995) Loss of CTLA-4 leads to massive lymphoproliferation and fatal multiorgan tissue destruction, revealing a critical negative regulatory role of CTLA-4. Immunity 3:541–547
Waterhouse P, Penninger JM, Timms E et al (1995) Lymphoproliferative disorders with early lethality in mice deficient in Ctla-4. Science 270:985–988
Chambers CA, Sullivan TJ, Allison JP (1997) Lymphoproliferation in CTLA-4-deficient mice is mediated by costimulation-dependent activation of CD4+ T cells. Immunity 7:885–895
Khattri R, Auger JA, Griffin MD et al (1999) Lymphoproliferative disorder in CTLA-4 knockout mice is characterized by CD28-regulated activation of Th2 responses. J Immunol 162:5784–5791
Mandelbrot DA, McAdam AJ, Sharpe AH (1999) B7-1 or B7-2 is required to produce the lymphoproliferative phenotype in mice lacking cytotoxic T lymphocyte-associated antigen 4 (CTLA-4). J Exp Med 189:435–440
Butty V, Roy M, Sabeti P et al (2007) Signatures of strong population differentiation shape extended haplotypes across the human CD28, CTLA4, and ICOS costimulatory genes. Proc Natl Acad Sci USA 104:570–575
Acknowledgments
The authors gratefully acknowledge the excellent technical assistance of Clarissa Struwe and Jana Petersen from the University of Marburg.
Conflict of interest
On behalf of all authors, the corresponding author states that there are no conflicts of interest.
Author information
Authors and Affiliations
Department of Psychosomatic Medicine and Psychotherapy, German Centre for Cardiovascular Research, University of Göttingen, Waldweg 33, 37073, Göttingen, Germany
J. Staab & T. Meyer
Department of Internal Medicine and Cardiology, Philipps University and UKGM GmbH Marburg, Marburg, Germany
V. Ruppert & S. Pankuweit
- J. Staab
You can also search for this author inPubMed Google Scholar
- V. Ruppert
You can also search for this author inPubMed Google Scholar
- S. Pankuweit
You can also search for this author inPubMed Google Scholar
- T. Meyer
You can also search for this author inPubMed Google Scholar
Corresponding author
Correspondence to T. Meyer.
Additional information
This article is dedicated to Professor Emeritus Bernhard Maisch, former Head of the Department of Cardiology at the University of Marburg and Editor of HERZ, on the occasion of his retirement.
Rights and permissions
About this article
Cite this article
Staab, J., Ruppert, V., Pankuweit, S.et al. Polymorphisms in genes encoding nonsarcomeric proteins and their role in the pathogenesis of dilated cardiomyopathy.Herz37, 836–842 (2012). https://doi.org/10.1007/s00059-012-3698-6
Published:
Issue Date:
Share this article
Anyone you share the following link with will be able to read this content:
Sorry, a shareable link is not currently available for this article.
Provided by the Springer Nature SharedIt content-sharing initiative