188Accesses
9Citations
Abstract
In this article, we study 2-designs with\(\gcd (r,\lambda )=1\) admitting a flag-transitive almost simple automorphism group with socle a finite simple exceptional group of Lie type. We obtain four infinite families of such designs and provide some examples in each of these families.
This is a preview of subscription content,log in via an institution to check access.
Access this article
Subscribe and save
- Get 10 units per month
- Download Article/Chapter or eBook
- 1 Unit = 1 Article or 1 Chapter
- Cancel anytime
Buy Now
Price includes VAT (Japan)
Instant access to the full article PDF.
Similar content being viewed by others
References
Alavi, S.H., Bayat, M., Daneshkhah, A.: Flag-transitive block designs and unitary groups. Submittedarxiv:1909.08546
Alavi, S.H., Bayat, M., Daneshkhah, A.: Finite exceptional groups of Lie type and symmetric designs. Submittedarxiv:1702.01257
Alavi, S.H., Bayat, M., Daneshkhah, A.: Symmetric designs admitting flag-transitive and point-primitive automorphism groups associated to two dimensional projective special groups. Des. Codes Cryptogr.79, 337–351 (2016).https://doi.org/10.1007/s10623-015-0055-9
Alavi, S.H., Daneshkhah, A., Mouseli, F.: A classification of flag-transitive block designs. Submittedarxiv:1911.06175
Beth, T., Jungnickel, D., Lenz, H.: Design Theory. Volume I, Encyclopedia of Mathematics and its Applications, vol. 69, 2nd edn. Cambridge University Press, Cambridge (1999).https://doi.org/10.1017/CBO9780511549533
Biliotti, M., Montinaro, A.: On flag-transitive symmetric designs of affine type. J. Combin. Des.25(2), 85–97 (2017).https://doi.org/10.1002/jcd.21533
Bray, J.N., Holt, D.F., Roney-Dougal, C.M.: The Maximal Subgroups of the Low-dimensional Finite Classical Groups. London Mathematical Society Lecture Note Series, vol. 407. Cambridge University Press, Cambridge (2013).https://doi.org/10.1017/CBO9781139192576. (With a foreword by Martin Liebeck)
Buekenhout, F., Delandtsheer, A., Doyen, J.: Finite linear spaces with flag-transitive groups. J. Combin. Theory Ser. A49(2), 268–293 (1988).https://doi.org/10.1016/0097-3165(88)90056-8
Conway, J.H., Curtis, R.T., Norton, S.P., Parker, R.A., Wilson, R.A.: Atlas of Finite Groups. Oxford University Press, Eynsham (1985). (Maximal subgroups and ordinary characters for simple groups, With computational assistance from J. G. Thackray)
Dembowski, P.: Finite Geometries. Springer, New York (1968).https://books.google.com/books?id=1wPzoAEACAAJ
Dixon, J.D., Mortimer, B.: Permutation Groups, Graduate Texts in Mathematics, vol. 163. Springer, New York (1996).https://doi.org/10.1007/978-1-4612-0731-3
Downs, M., Jones, G.A.: Möbius inversion in Suzuki groups and enumeration of regular objects. In: Symmetries in graphs, maps, and polytopes, Springer Proc. Math. Stat., vol. 159, pp. 97–127. Springer, [Cham] (2016).https://doi.org/10.1007/978-3-319-30451-9_5
Kantor, W.M.: Homogeneous designs and geometric lattices. J. Combin. Theory Ser. A38(1), 66–74 (1985).https://doi.org/10.1016/0097-3165(85)90022-6
Kleidman, P., Liebeck, M.: The Subgroup Structure of the Finite Classical Groups. London Mathematical Society Lecture Note Series, vol. 129. Cambridge University Press, Cambridge (1990).https://doi.org/10.1017/CBO9780511629235
Kleidman, P.B.: The finite flag-transitive linear spaces with an exceptional automorphism group. In: Finite geometries and combinatorial designs (Lincoln, NE, 1987), Contemp. Math., vol. 111, pp. 117–136. Amer. Math. Soc., Providence, RI (1990).https://doi.org/10.1017/CBO9780511629235
Korableva, V.V.: Parabolic permutation representations of groups\({E}_6(q)\) and\({E}_7(q)\). In: Combinatorial and Computational Methods in Mathematics [in Russian], pp. 160–189. Omsk Univ., Omsk (1999)
Lander, E.S.: Symmetric Designs: an Algebraic Approach. London Mathematical Society Lecture Note Series, vol. 74. Cambridge University Press, Cambridge (1983).https://doi.org/10.1017/CBO9780511662164
Liebeck, M.W., Saxl, J.: The finite primitive permutation groups of rank three. Bull. Lond. Math. Soc.18(2), 165–172 (1986).https://doi.org/10.1112/blms/18.2.165
Liebeck, M.W., Saxl, J., Seitz, G.: On the overgroups of irreducible subgroups of the finite classical groups. Proc. Lond. Math. Soc.50(3), 507–537 (1987).https://doi.org/10.1112/plms/s3-50.3.426
Lüneburg, H.: Some remarks concerning the Ree groups of type\((G_{2})\). J. Algebra3, 256–259 (1966).https://doi.org/10.1016/0021-8693(66)90014-7
Pierro, E.: The Möbius function of the small Ree groups. Australas. J. Combin.66, 142–176 (2016)
Saxl, J.: On finite linear spaces with almost simple flag-transitive automorphism groups. J. Combin. Theory Ser. A100(2), 322–348 (2002).https://doi.org/10.1006/jcta.2002.3305
Seitz, G.M.: Flag-transitive subgroups of Chevalley groups. Ann. Math.2(97), 27–56 (1973)
The GAP Group.: GAP—Groups, Algorithms, and Programming, Version 4.7.9 (2015).http://www.gap-system.org
Tian, D., Zhou, S.: Flag-transitive 2-\((v, k,\lambda )\) symmetric designs with sporadic socle. J. Combin. Des.23(4), 140–150 (2015).https://doi.org/10.1002/jcd.21385.https://onlinelibrary.wiley.com/doi/abs/10.1002/jcd.21385
Zhan, X., Zhou, S.: Flag-transitive non-symmetric 2-designs with\((r,\lambda )=1\) and sporadic socle. Des. Codes Cryptogr.81(3), 481–487 (2016).https://doi.org/10.1007/s10623-015-0171-6
Zhou, S., Wang, Y.: Flag-transitive non-symmetric 2-designs with\((r,\lambda )=1\) and alternating socle. Electron. J. Combin.22(2), Paper 2.6, 15 (2015).https://doi.org/10.37236/4664.
Zhu, Y., Guan, H., Zhou, S.: Flag-transitive 2-(v, k,\(\lambda \)) symmetric designs with (k,\(\lambda \)) = 1 and alternating socle. Front. Math. China10(6), 1483–1496 (2015).https://doi.org/10.1007/s11464-015-0480-0
Zieschang, P.H.: Flag transitive automorphism groups of 2-designs with\((r,\lambda )=1\). J. Algebra118(2), 369–375 (1988).https://doi.org/10.1016/0021-8693(88)90027-0.http://www.sciencedirect.com/science/article/pii/0021869388900270
Acknowledgements
The author would like to thank anonymous referees for providing us helpful and constructive comments and suggestions. The author are also grateful to Cheryl E. Praeger and Alice Devillers for supporting his visit to UWA (The University of Western Australia) during July-September 2019. He would also like to thank Alexander Bors for introducing reference [21].
Author information
Authors and Affiliations
Department of Mathematics, Faculty of Science, Bu-Ali Sina University, Hamedan, Iran
Seyed Hassan Alavi
- Seyed Hassan Alavi
You can also search for this author inPubMed Google Scholar
Corresponding author
Correspondence toSeyed Hassan Alavi.
Additional information
Publisher's Note
Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.
Rights and permissions
About this article
Cite this article
Alavi, S.H. Flag-Transitive Block Designs and Finite Simple Exceptional Groups of Lie Type.Graphs and Combinatorics36, 1001–1014 (2020). https://doi.org/10.1007/s00373-020-02161-0
Received:
Revised:
Published:
Issue Date:
Share this article
Anyone you share the following link with will be able to read this content:
Sorry, a shareable link is not currently available for this article.
Provided by the Springer Nature SharedIt content-sharing initiative
Keywords
- Block design
- Point-primitive
- Flag-transitive
- Automorphism group
- Finite simple exceptional group
- Large subgroup