Movatterモバイル変換


[0]ホーム

URL:


Skip to main content
Springer Nature Link
Log in

Flag-Transitive Block Designs and Finite Simple Exceptional Groups of Lie Type

  • Original Paper
  • Published:
Graphs and Combinatorics Aims and scope Submit manuscript

Abstract

In this article, we study 2-designs with\(\gcd (r,\lambda )=1\) admitting a flag-transitive almost simple automorphism group with socle a finite simple exceptional group of Lie type. We obtain four infinite families of such designs and provide some examples in each of these families.

This is a preview of subscription content,log in via an institution to check access.

Access this article

Log in via an institution

Subscribe and save

Springer+ Basic
¥17,985 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price includes VAT (Japan)

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Alavi, S.H., Bayat, M., Daneshkhah, A.: Flag-transitive block designs and unitary groups. Submittedarxiv:1909.08546

  2. Alavi, S.H., Bayat, M., Daneshkhah, A.: Finite exceptional groups of Lie type and symmetric designs. Submittedarxiv:1702.01257

  3. Alavi, S.H., Bayat, M., Daneshkhah, A.: Symmetric designs admitting flag-transitive and point-primitive automorphism groups associated to two dimensional projective special groups. Des. Codes Cryptogr.79, 337–351 (2016).https://doi.org/10.1007/s10623-015-0055-9

    Article MathSciNet MATH  Google Scholar 

  4. Alavi, S.H., Daneshkhah, A., Mouseli, F.: A classification of flag-transitive block designs. Submittedarxiv:1911.06175

  5. Beth, T., Jungnickel, D., Lenz, H.: Design Theory. Volume I, Encyclopedia of Mathematics and its Applications, vol. 69, 2nd edn. Cambridge University Press, Cambridge (1999).https://doi.org/10.1017/CBO9780511549533

    Book MATH  Google Scholar 

  6. Biliotti, M., Montinaro, A.: On flag-transitive symmetric designs of affine type. J. Combin. Des.25(2), 85–97 (2017).https://doi.org/10.1002/jcd.21533

    Article MathSciNet MATH  Google Scholar 

  7. Bray, J.N., Holt, D.F., Roney-Dougal, C.M.: The Maximal Subgroups of the Low-dimensional Finite Classical Groups. London Mathematical Society Lecture Note Series, vol. 407. Cambridge University Press, Cambridge (2013).https://doi.org/10.1017/CBO9781139192576. (With a foreword by Martin Liebeck)

    Book MATH  Google Scholar 

  8. Buekenhout, F., Delandtsheer, A., Doyen, J.: Finite linear spaces with flag-transitive groups. J. Combin. Theory Ser. A49(2), 268–293 (1988).https://doi.org/10.1016/0097-3165(88)90056-8

    Article MathSciNet MATH  Google Scholar 

  9. Conway, J.H., Curtis, R.T., Norton, S.P., Parker, R.A., Wilson, R.A.: Atlas of Finite Groups. Oxford University Press, Eynsham (1985). (Maximal subgroups and ordinary characters for simple groups, With computational assistance from J. G. Thackray)

    MATH  Google Scholar 

  10. Dembowski, P.: Finite Geometries. Springer, New York (1968).https://books.google.com/books?id=1wPzoAEACAAJ

  11. Dixon, J.D., Mortimer, B.: Permutation Groups, Graduate Texts in Mathematics, vol. 163. Springer, New York (1996).https://doi.org/10.1007/978-1-4612-0731-3

    Book MATH  Google Scholar 

  12. Downs, M., Jones, G.A.: Möbius inversion in Suzuki groups and enumeration of regular objects. In: Symmetries in graphs, maps, and polytopes, Springer Proc. Math. Stat., vol. 159, pp. 97–127. Springer, [Cham] (2016).https://doi.org/10.1007/978-3-319-30451-9_5

  13. Kantor, W.M.: Homogeneous designs and geometric lattices. J. Combin. Theory Ser. A38(1), 66–74 (1985).https://doi.org/10.1016/0097-3165(85)90022-6

    Article MathSciNet MATH  Google Scholar 

  14. Kleidman, P., Liebeck, M.: The Subgroup Structure of the Finite Classical Groups. London Mathematical Society Lecture Note Series, vol. 129. Cambridge University Press, Cambridge (1990).https://doi.org/10.1017/CBO9780511629235

    Book MATH  Google Scholar 

  15. Kleidman, P.B.: The finite flag-transitive linear spaces with an exceptional automorphism group. In: Finite geometries and combinatorial designs (Lincoln, NE, 1987), Contemp. Math., vol. 111, pp. 117–136. Amer. Math. Soc., Providence, RI (1990).https://doi.org/10.1017/CBO9780511629235

  16. Korableva, V.V.: Parabolic permutation representations of groups\({E}_6(q)\) and\({E}_7(q)\). In: Combinatorial and Computational Methods in Mathematics [in Russian], pp. 160–189. Omsk Univ., Omsk (1999)

  17. Lander, E.S.: Symmetric Designs: an Algebraic Approach. London Mathematical Society Lecture Note Series, vol. 74. Cambridge University Press, Cambridge (1983).https://doi.org/10.1017/CBO9780511662164

    Book  Google Scholar 

  18. Liebeck, M.W., Saxl, J.: The finite primitive permutation groups of rank three. Bull. Lond. Math. Soc.18(2), 165–172 (1986).https://doi.org/10.1112/blms/18.2.165

    Article MathSciNet MATH  Google Scholar 

  19. Liebeck, M.W., Saxl, J., Seitz, G.: On the overgroups of irreducible subgroups of the finite classical groups. Proc. Lond. Math. Soc.50(3), 507–537 (1987).https://doi.org/10.1112/plms/s3-50.3.426

    Article MathSciNet MATH  Google Scholar 

  20. Lüneburg, H.: Some remarks concerning the Ree groups of type\((G_{2})\). J. Algebra3, 256–259 (1966).https://doi.org/10.1016/0021-8693(66)90014-7

    Article MathSciNet MATH  Google Scholar 

  21. Pierro, E.: The Möbius function of the small Ree groups. Australas. J. Combin.66, 142–176 (2016)

    MathSciNet MATH  Google Scholar 

  22. Saxl, J.: On finite linear spaces with almost simple flag-transitive automorphism groups. J. Combin. Theory Ser. A100(2), 322–348 (2002).https://doi.org/10.1006/jcta.2002.3305

    Article MathSciNet MATH  Google Scholar 

  23. Seitz, G.M.: Flag-transitive subgroups of Chevalley groups. Ann. Math.2(97), 27–56 (1973)

    Article MathSciNet  Google Scholar 

  24. The GAP Group.: GAP—Groups, Algorithms, and Programming, Version 4.7.9 (2015).http://www.gap-system.org

  25. Tian, D., Zhou, S.: Flag-transitive 2-\((v, k,\lambda )\) symmetric designs with sporadic socle. J. Combin. Des.23(4), 140–150 (2015).https://doi.org/10.1002/jcd.21385.https://onlinelibrary.wiley.com/doi/abs/10.1002/jcd.21385

  26. Zhan, X., Zhou, S.: Flag-transitive non-symmetric 2-designs with\((r,\lambda )=1\) and sporadic socle. Des. Codes Cryptogr.81(3), 481–487 (2016).https://doi.org/10.1007/s10623-015-0171-6

    Article MathSciNet MATH  Google Scholar 

  27. Zhou, S., Wang, Y.: Flag-transitive non-symmetric 2-designs with\((r,\lambda )=1\) and alternating socle. Electron. J. Combin.22(2), Paper 2.6, 15 (2015).https://doi.org/10.37236/4664.

  28. Zhu, Y., Guan, H., Zhou, S.: Flag-transitive 2-(v, k,\(\lambda \)) symmetric designs with (k,\(\lambda \)) = 1 and alternating socle. Front. Math. China10(6), 1483–1496 (2015).https://doi.org/10.1007/s11464-015-0480-0

    Article MathSciNet MATH  Google Scholar 

  29. Zieschang, P.H.: Flag transitive automorphism groups of 2-designs with\((r,\lambda )=1\). J. Algebra118(2), 369–375 (1988).https://doi.org/10.1016/0021-8693(88)90027-0.http://www.sciencedirect.com/science/article/pii/0021869388900270

Download references

Acknowledgements

The author would like to thank anonymous referees for providing us helpful and constructive comments and suggestions. The author are also grateful to Cheryl E. Praeger and Alice Devillers for supporting his visit to UWA (The University of Western Australia) during July-September 2019. He would also like to thank Alexander Bors for introducing reference [21].

Author information

Authors and Affiliations

  1. Department of Mathematics, Faculty of Science, Bu-Ali Sina University, Hamedan, Iran

    Seyed Hassan Alavi

Authors
  1. Seyed Hassan Alavi

    You can also search for this author inPubMed Google Scholar

Corresponding author

Correspondence toSeyed Hassan Alavi.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Alavi, S.H. Flag-Transitive Block Designs and Finite Simple Exceptional Groups of Lie Type.Graphs and Combinatorics36, 1001–1014 (2020). https://doi.org/10.1007/s00373-020-02161-0

Download citation

Keywords

Mathematics Subject Classification

Access this article

Subscribe and save

Springer+ Basic
¥17,985 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price includes VAT (Japan)

Instant access to the full article PDF.

Advertisement


[8]ページ先頭

©2009-2025 Movatter.jp