Part of the book series:Lecture Notes in Computer Science ((LNCS,volume 855))
Included in the following conference series:
Abstract
We consider the motion planning problem for a point constrained to move along a smooth closed convex path of bounded curvature. The workspace of the moving point is bounded by a convex polygon withm vertices, containing an obstacle in a form of a simple polygon withn vertices. We present anO(m+n) time algorithm finding the path, going around the obstacle, whose curvature is the smallest possible.
This work has been supported in part by the ESPRIT Basic Research Actions Nr. 7141 (ALCOM II) and Nr. 6546 (PROMotion), NSERC, FCAR and FODAR.
This is a preview of subscription content,log in via an institution to check access.
Preview
Unable to display preview. Download preview PDF.
References
A. Aggarwal, L. J. Guibas, J. Saxe, and P. W. Shor. A linear-time algorithm for computing the Voronoi diagram of a convex polygon.Discrete Comput. Geom., 4:591–604, 1989.
J. Canny, B. R. Donald, J. Reif, and P. Xavier. On the complexity of kinodynamic planning. InProc. 29th Annu. IEEE Sympos. Found. Comput. Sci., pages 306–316, 1988.
L. E. Dubins. On curves of minimal length with a constraint on average curvature and with prescribed initial and terminal positions and tangents.Amer. J. Math., 79:497–516, 1957.
S. Fortune and G. Wilfong. Planning constrained motion. InProc. 20th Annu. ACM Sympos. Theory Comput., pages 445–459, 1988.
P. Jacobs and J. Canny. Planning smooth paths for mobile robots. InProc. IEEE Internat. Conf. Robot. Autom., pages 2–7, 1989.
D. G. Kirkpatrick. Optimal search in planar subdivisions.SIAM J. Comput., 12:28–35, 1983.
J.-C. Latombe.Robot Motion Planning. Kluwer Academic Publishers, Boston, 1991.
C. Ó'Dúnlaing. Motion-planning with inertial constraints.Algorithmica, 2:431–475, 1987.
M. H. Overmars. A random approach to motion planning. Report RUU-CS-92-32, Dept. Comput. Sci., Univ. Utrecht, Utrecht, Netherlands, 1992.
F. P. Preparata. The medial axis of a simple polygon. InProc. 6th Internat. Sympos. Math. Found. Comput. Sci., volume 53 ofLecture Notes in Computer Science, pages 443–450. Springer-Verlag, 1977.
J. H. Reif and M. Sharir. Motion planning in the presence of moving obstacles. InProc. 26th Annu. IEEE Sympos. Found. Comput. Sci., pages 144–154, 1985.
J. T. Schwartz and M. Sharir. Algorithmic motion planning in robotics. In J. van Leeuwen, editor,Algorithms and Complexity, volume A ofHandbook of Theoretical Computer Science, pages 391–430. Elsevier, Amsterdam, 1990.
P. Švestka. A probabilistic approach to motion planning for car-like robots. Report RUU-CS-93-18, Dept. Comput. Sci., Univ. Utrecht, Utrecht, Netherlands, 1993.
G. Wilfong. Motion planning for an autonomous vehicle. InProc. IEEE Internat. Conf. Robot. Autom., pages 529–533, 1988.
Author information
Authors and Affiliations
INRIA, 2004 Route des Lucioles, B.P.109, 06561, Valbonne cedex, France
Jean-Daniel Boissonnat & Olivier Devillers
Dép. d'informatique, Université du Québec à Hull, Canada
Jurek Czyzowicz
Dép. d'informatique et de mathématique, Université du Québec à Chicoutimi, Canada
Jean-Marc Robert
URA 1376, Lab. I3S, INRIA and CNRS, 250 rue Albert Einstein, 06560, Sophia Antipolis, Valbonne, France
Mariette Yvinec
- Jean-Daniel Boissonnat
You can also search for this author inPubMed Google Scholar
- Jurek Czyzowicz
You can also search for this author inPubMed Google Scholar
- Olivier Devillers
You can also search for this author inPubMed Google Scholar
- Jean-Marc Robert
You can also search for this author inPubMed Google Scholar
- Mariette Yvinec
You can also search for this author inPubMed Google Scholar
Editor information
Rights and permissions
Copyright information
© 1994 Springer-Verlag Berlin Heidelberg
About this paper
Cite this paper
Boissonnat, JD., Czyzowicz, J., Devillers, O., Robert, JM., Yvinec, M. (1994). Convex tours of bounded curvature. In: van Leeuwen, J. (eds) Algorithms — ESA '94. ESA 1994. Lecture Notes in Computer Science, vol 855. Springer, Berlin, Heidelberg. https://doi.org/10.1007/BFb0049413
Download citation
Published:
Publisher Name:Springer, Berlin, Heidelberg
Print ISBN:978-3-540-58434-6
Online ISBN:978-3-540-48794-4
eBook Packages:Springer Book Archive
Share this paper
Anyone you share the following link with will be able to read this content:
Sorry, a shareable link is not currently available for this article.
Provided by the Springer Nature SharedIt content-sharing initiative