Movatterモバイル変換


[0]ホーム

URL:


Skip to main content

Advertisement

Springer Nature Link
Log in

Applying voting to segmentation of MR images

  • Shape Representation and Image Segmentation
  • Conference paper
  • First Online:

Abstract

The performance of applying voting to MR segmentation is investigated. Three different segmentation methods (fuzzy c-means, Bayes, and k-nearest neighbour) are used as input to the voting algorithm. Using human expert segmented images as a reference an error rate of 7.1% is obtained when applying voting. When comparing to the other methods it is seen that the results of applying the voting algorithm are slightly improved in terms of the error rate, minimum and maximum error.

Keywords

These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

References

  1. J.C. Bezdek, L.O. Hall, and L.P. Clarke: Review of MR image segmentation techniques using pattern recognition. Medical Physics, 20(4):1033–1048, 1993.

    Article PubMed  Google Scholar 

  2. M. Bro-Nielsen and S. Cotin: Real-time Volumetric Deformable Models for Surgery Simulation using Finite Elements and Condensation. Institute of Mathematical Modelling, Technical University, Denmark, 1995.

    Google Scholar 

  3. L. P. Clarke, R. P. Velthuizen, M. A. Camacho, J. J. Heine, M. Vaidyanathan, L. O. Hall, R. W. Thatcher, and M. L. Silbiger: MRI Segmentation: Methods and Applications. Magnetic Resonance Imaging, 13(3):343–368, 1995.

    Article PubMed  Google Scholar 

  4. R.O. Duda and P.E. Hart: Pattern Classification and Scene Analysis. Wiley-Interscience, 1973.

    Google Scholar 

  5. P.T.English and C. Moore: MRI for Radiographers. Springer-Verlag, 1995.

    Google Scholar 

  6. U. Kuhn, Kühnapfel, H.-G. Krumm, and B. Neisius: The Karlsruhe Endoscopic Surgery Trainer-A “Virtual Reality” based Training System for Minimal Invasive Surgery. CAR, 1996.

    Google Scholar 

  7. L. Lam and C.Y. Suen: Application of Majority Voting to Pattern recognition: An Analysis of its Behaviour and Performance. IEEE Transactions on Systems, Man, and Cyberbetics,27(5):553–568, 1997.

    Google Scholar 

  8. B. Parhami: Voting Algorithms. IEEE Transactions on Reliability, 43(4):617–629, 1994.

    Article  Google Scholar 

  9. A. Pommert, M. Riemer, T. Schiemann, R. Schubert, U. Tiede, and K.H. Höhne: Three-Dimensional Imaging in Medicine: Methods and Applications. In Computer-Integrated Surgery, pages 155–174. The MIT Press, 1996.

    Google Scholar 

  10. M. Vaidyanathan, L.P. Clarke, C. Heidtman, R.P. Velthuizen, and L.O. Hall: Normal Brain Volume Measurement using Multispectral MRI Segmentation. Magnetic Resonance Imaging, 15(1):87–97, 1997.

    Article PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

  1. Dept. of Medical Informatics and Image Analysis, Aalborg University, Fredrik Bajers Vej 7D, 9220, Aalborg, Denmark

    Lasse Riis Østergaard & Ole Vilhelm Larsen

Authors
  1. Lasse Riis Østergaard

    You can also search for this author inPubMed Google Scholar

  2. Ole Vilhelm Larsen

    You can also search for this author inPubMed Google Scholar

Editor information

Adnan Amin Dov Dori Pavel Pudil Herbert Freeman

Rights and permissions

Copyright information

© 1998 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Østergaard, L.R., Larsen, O.V. (1998). Applying voting to segmentation of MR images. In: Amin, A., Dori, D., Pudil, P., Freeman, H. (eds) Advances in Pattern Recognition. SSPR /SPR 1998. Lecture Notes in Computer Science, vol 1451. Springer, Berlin, Heidelberg. https://doi.org/10.1007/BFb0033304

Download citation

Publish with us

Societies and partnerships


[8]ページ先頭

©2009-2025 Movatter.jp