Part of the book series:Lecture Notes in Computer Science ((LNCS,volume 453))
Included in the following conference series:
235Accesses
Abstract
After summarizing some results on pseudoprimes, a characterization is presented of Fibonacci pseudoprimes of thebth kind for all integersb. Subsequently, some generalizations of the concept of strong pseudoprimes are established.
This is a preview of subscription content,log in via an institution to check access.
Preview
Unable to display preview. Download preview PDF.
References
Baillie, R., Wagstaff Jr., S.S.: Lucas pseudoprimes. Math.of Comp.35, 1391–1417 (1980).
Dickson, L.: The Analytic Representation of Substitutions on a Power of a Prime Number of Letters with a Discussion of the Linear Group I. Ann.of Math.11, 65–120 (1896).
Di Porto, A., Filipponi, P.: A Probabilistic Primality Test Based on the Properties of Certain Generalized Lucas Numbers. In: Advances in Cryptology — Eurocrypt'88, Lecture Notes in Computer Science330, Springer-Verlag, New York-Berlin-Heidelberg, pp. 211–223, 1988.
Di Porto, A., Filipponi, P.: Extended Abstract, Eurocrypt'89, Houthalen (Belgium), April 10–13, 1989.
Filipponi, P.: Table of Fibonacci Pseudoprimes to 108. Note Recensioni Notizie37, no. 1–2, 33–38 (1988).
Koblitz, N.: A Course in Number Theory and Cryptography. Springer-Verlag, New York-Berlin-Heidelberg, 1987.
Lidl, R.: Tschebyscheffpolynome in mehreren Variablen. J.reine angew.Math.273, 178–198 (1975).
Lidl, R., Müller, W.B.: Generalizations of the Fibonacci Pseudoprimes Test. To appear.
Lidl, R., Müller, W.B., Oswald, A.: Some Remarks on Strong Fibonacci Pseudoprimes. To appear in Applicable Algebra in Engineering, Communication and Computer Science1 (1990).
Lidl, R., Niederreiter, H.: Finite Fields. Addison Wesley, Reading, 1983. (Now published by Cambridge University Press, Cambridge.)
Lidl, R., Wells, C.: Chebyshev polynomials in several variables. J.reine angew.Math.255, 104–111 (1972).
Nöbauer, R.: Über die Fixpunkte einer Klasse von Dickson-Permutationen. Sb.d.Österr.Akad.d.Wiss., math.-nat.Kl., Abt.II, Bd.193, 521–547 (1984).
Ribenboim, P.: The Book of Prime Number Records. Springer-Verlag, New York-Berlin-Heidelberg, 1988.
Von zur Gathen, J.:Testing permutation polynomials. Proc. 30 Annual IEEE Symp. Foundations of Computer Science, pages 88–92, Research Triangle Park, NC, 1989
Author information
Authors and Affiliations
Dept. of Mathematics, University of Tasmania, 7001, Hobart, Tas., Australia
Rudolf Lidl
Institut für Mathematik, Universität Klagenfurt, A-9022, Klagenfurt, Austria
Winfried B. Müller
- Rudolf Lidl
You can also search for this author inPubMed Google Scholar
- Winfried B. Müller
You can also search for this author inPubMed Google Scholar
Editor information
Rights and permissions
Copyright information
© 1990 Springer-Verlag Berlin Heidelberg
About this paper
Cite this paper
Lidl, R., Müller, W.B. (1990). A note on strong Fibonacci pseudoprimes. In: Seberry, J., Pieprzyk, J. (eds) Advances in Cryptology — AUSCRYPT '90. AUSCRYPT 1990. Lecture Notes in Computer Science, vol 453. Springer, Berlin, Heidelberg. https://doi.org/10.1007/BFb0030371
Download citation
Share this paper
Anyone you share the following link with will be able to read this content:
Sorry, a shareable link is not currently available for this article.
Provided by the Springer Nature SharedIt content-sharing initiative