Movatterモバイル変換


[0]ホーム

URL:


Skip to main content
Springer Nature Link
Log in

On thecd-variation polynomials of André and simsun permutations

  • Published:
Discrete & Computational Geometry Aims and scope Submit manuscript

Abstract

We prove a conjecture of Stanley on thecd-index of the semisuspension of the face poset of a simplicial shelling component. We give a new signed generalization of André permutations, together with a new notion ofcd-variation for signed permutations. This generalization not only allows us to compute thecd-index of the face poset of a cube, but also occurs as a natural set of orbit representatives for a signed generalization of the Foata-Strehl commutative group action on the symmetric group. From the induction techniques used, it becomes clear that there is more than one way to define classes of permutations andcd-variation such that they allow us to compute thecd-index of the same poset.

Article PDF

Similar content being viewed by others

Use our pre-submission checklist

Avoid common mistakes on your manuscript.

References

  1. M. M. Bayer and L. J. Billera, Generalized Dehn-Sommerville relations for polytopes, spheres and Eulerian partially ordered sets.Invent. Math.79 (1985), 143–157.

    Article MATH MathSciNet  Google Scholar 

  2. M. M. Bayer and A. Klapper, A new index for polytopes,Discrete Comput. Geom.6 (1991), 33–47.

    Article MATH MathSciNet  Google Scholar 

  3. A. Björner, Shellable and Cohen-Macaulay partially ordered sets.Trans. Amer. Math. Soc.260 (1980), 159–183.

    Article MATH MathSciNet  Google Scholar 

  4. R. Ehrenborg and M. Readdy, Ther-cubical lattice and a generalization of thecd-index,European J. Combin., to appear.

  5. D. Foata and M. P. Schützenberger, Nombres d'Euler et permutations alternantes, Manuscript, University of Florida, Gainesville, FL, 1971.

    Google Scholar 

  6. D. Foata and M. P. Schützenberger, Nombres d'Euler et permutations alternantes. In: J. N. Srivastavaet al., A Survey of Combinatorial Theory, Amsterdam, North-Holland, 1973, pp. 173–187.

    Google Scholar 

  7. D. Foata and V. Strehl, Rearrangements of the symmetric group and enumerative properties of the tangent and secant numbers,Math. Z.137 (1974), 257–264.

    Article MATH MathSciNet  Google Scholar 

  8. D. Foata and V. Strehl, Euler numbers and variations of permutations. In:Colloquio Internazionale sulle Teorie Combinatorie, 1973, Tome I (Atti Dei Convegni Lincei17, 119–131), Accademia Nazionale dei Lincei, Rome, 1976.

    Google Scholar 

  9. N. Metropolis and G.-C. Rota, Combinatorial structure of the faces of then-cube,SIAM J. Appl. Math.35(4) (1978), 689–694.

    Article MATH MathSciNet  Google Scholar 

  10. M. Purtill, André permutations, lexicographic shellability, and thecd-index of a convex polytope,Trans. Amer. Math. Soc.338(1) (1993), 77–104.

    Article MATH MathSciNet  Google Scholar 

  11. R. P. Stanley, Flagf-vectors and thecd-index,Math. Z.216 (1994), 483–499.

    Article MATH MathSciNet  Google Scholar 

  12. S. Sundaram, The homology representations of the symmetric group on Cohen-Macaulay subposets of the partition lattice,Adv. in Math.104 (1994), 225–296.

    Article MATH MathSciNet  Google Scholar 

  13. S. Sundaram, The homology of partitions with an even number of blocks,J. Algebraic Combin.4(1) (1995), 69–92.

    Article MATH MathSciNet  Google Scholar 

Download references

Author information

Author notes
  1. G. Hetyei

    Present address: Mathematical Research Institute of the Hungarian Academy of Sciences, Hungary

Authors and Affiliations

  1. LACIM, Département de mathématiques, Université du Québec à Montréal, Case postale 8888, succursale Centre-Ville, H3C 3P8, Montréal, Québec, Canada

    G. Hetyei

Authors
  1. G. Hetyei

    You can also search for this author inPubMed Google Scholar

Additional information

This research was supported by the UQAM Foundation.

Rights and permissions

About this article

Use our pre-submission checklist

Avoid common mistakes on your manuscript.

Advertisement


[8]ページ先頭

©2009-2025 Movatter.jp