Movatterモバイル変換


[0]ホーム

URL:


Skip to main content

Advertisement

Springer Nature Link
Log in

TKGR-GPRSCL: Enhance Temporal Knowledge Graph Reasoning with Graph Structure-Aware Path Representation and Supervised Contrastive Learning

  • Conference paper
  • First Online:

Part of the book series:Lecture Notes in Computer Science ((LNAI,volume 15360))

  • 448Accesses

Abstract

Temporal knowledge graph reasoning (TKGR) aims to infer new temporal fact knowledge based on existing ones, which has become a major concern due to its wide demands, especially for time-sensitive modeling scenarios. However, existing temporal knowledge graph representation learning models usually have challenges in capturing complex graph structure-aware information and discriminating different relation expressions for unknown query prediction, which potentially limits the model performance on the TKGR task. In this paper, we propose a novel TKGR model named TKGR-GPRSCL. Specifically, we first introduce a maximum entropy-based random walk sampler, which can sample sufficient paths containing complicated graph structure-aware information in the TKG in form of path embedding. Then, we model the preference of different paths to the target entity, and the correlations between the target entity and its temporal property depending on transformations in the complex plane for encoding temporal fact. Finally, we advance supervised contrastive learning of relation patterns in light of the discrimination of different relation expressions to be preferably leveraged to predict entities for testing the queries, for those unknown queries in particular. We evaluate TKGR-GPRSCL on three TKGR benchmark datasets, and experimental results demonstrate that our model achieves superior performance compared to competitive baselines  (All the data and codes are publicly available athttps://github.com/shengyp/TKGR-GPRSCL).

This is a preview of subscription content,log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
¥17,985 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
JPY 3498
Price includes VAT (Japan)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
JPY 8465
Price includes VAT (Japan)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
JPY 10581
Price includes VAT (Japan)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide -see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Similar content being viewed by others

References

  1. Barbosa, D., Wang, H., Yu, C.: Shallow information extraction for the knowledge web. In: Proceedings of ICDE, pp. 1264–1267 (2013)

    Google Scholar 

  2. Bordes, A., Usunier, N., Garcia-Duran, A., Weston, J., Yakhnenko, O.: Translating embeddings for modeling multi-relational data. In: Proceedings of NeurIPS, vol. 26 (2013)

    Google Scholar 

  3. Chen, W., et al.: Local-global history-aware contrastive learning for temporal knowledge graph reasoning. ArXiv (2023)

    Google Scholar 

  4. Cover, T.M.: Elements of Information Theory. Wiley (1999)

    Google Scholar 

  5. Deng, S., Rangwala, H., Ning, Y.: Dynamic knowledge graph based multi-event forecasting. In: SIGKDD, pp. 1585–1595 (2020)

    Google Scholar 

  6. Feng, F., He, X., Wang, X., Luo, C., Liu, Y., Chua, T.S.: Temporal relational ranking for stock prediction. ACM Trans. Inf. Syst.37(2), 1–30 (2019)

    Article  Google Scholar 

  7. García-Durán, A., Dumančić, S., Niepert, M.: Learning sequence encoders for temporal knowledge graph completion

    Google Scholar 

  8. Goel, R., Kazemi, S.M., Brubaker, M., Poupart, P.: Diachronic embedding for temporal knowledge graph completion. In: Proceedings of AAAI, vol. 34, pp. 3988–3995 (2020)

    Google Scholar 

  9. Goel, R., Kazemi, S.M., Brubaker, M.A., Poupart, P.: Diachronic embedding for temporal knowledge graph completion. ArXiv (2019)

    Google Scholar 

  10. Jin, W., Qu, M., Jin, X., Ren, X.: Recurrent event network: autoregressive structure inference over temporal knowledge graphs. In: Proceedings of EMNLP (2019)

    Google Scholar 

  11. Khosla, P., et al.: Supervised contrastive learning. In: Proceedings of NeurIPS, vol. 33, pp. 18661–18673 (2020)

    Google Scholar 

  12. Lacroix, T., Obozinski, G., Usunier, N.: Tensor decompositions for temporal knowledge base completion. In: Proceedings of ICLR (2020)

    Google Scholar 

  13. Le, T., Le, N., Le, B.: Knowledge graph embedding by relational rotation and complex convolution for link prediction. Expert Syst. Appl. 23 (2023)

    Google Scholar 

  14. Leblay, J., Chekol, M.W.: Deriving validity time in knowledge graph. In: Companion Proceedings of the Web Conference 2018, pp. 1771–1776 (2018)

    Google Scholar 

  15. Leetaru, K., Schrodt, P.A.: Gdelt: global data on events, location, and tone, 1979–2012. In: ISA Annual Convention, vol. 2, pp. 1–49. Citeseer (2013)

    Google Scholar 

  16. Li, A., Pan, Y.: Structural information and dynamical complexity of networks. IEEE Trans. Inf. Theory62(6), 3290–3339 (2016)

    Article MathSciNet  Google Scholar 

  17. Li, Y., Sun, S., Zhao, J.: Tirgn: time-guided recurrent graph network with local-global historical patterns for temporal knowledge graph reasoning. In: Proceedings of IJCAI, pp. 2152–2158 (2022)

    Google Scholar 

  18. Li, Z., et al.: Complex evolutional pattern learning for temporal knowledge graph reasoning. In: Proceedings of ACL (2022)

    Google Scholar 

  19. Li, Z., et al.: Temporal knowledge graph reasoning based on evolutional representation learning. In: Proceedings of SIGIR, pp. 408–417 (2021)

    Google Scholar 

  20. Liang, K., et al.: A survey of knowledge graph reasoning on graph types: static, dynamic, and multimodal. arXiv preprintarXiv:2212.05767 (2022)

  21. Liu, K., Zhao, F., Xu, G., Wang, X., Jin, H.: Retia: relation-entity twin-interact aggregation for temporal knowledge graph extrapolation. In: Proceedings of ICDE, pp. 1761–1774. IEEE (2023)

    Google Scholar 

  22. Liu, Z., et al.: Geniepath: graph neural networks with adaptive receptive paths. In: Proceedings of AAAI, vol. 33, pp. 4424–4431 (2019)

    Google Scholar 

  23. Luo, G., et al.: Graph entropy guided node embedding dimension selection for graph neural networks. In: Proceedings of IJCAI (2021)

    Google Scholar 

  24. Shang, C., Tang, Y., Huang, J., Bi, J., He, X., Zhou, B.: End-to-end structure-aware convolutional networks for knowledge base completion. In: Proceedings of AAAI, vol. 33, pp. 3060–3067 (2019)

    Google Scholar 

  25. Sun, H., Geng, S., Zhong, J., Hu, H., He, K.: Graph Hawkes transformer for extrapolated reasoning on temporal knowledge graphs. In: Proceedings of EMNLP, pp. 7481–7493 (2022)

    Google Scholar 

  26. Sun, H., Zhong, J., Ma, Y., Han, Z., He, K.: Timetraveler: reinforcement learning for temporal knowledge graph forecasting. In: Proceedings of EMNLP (2021)

    Google Scholar 

  27. Sun, Y., et al.: Beyond homophily: structure-aware path aggregation graph neural network. In: Proceedings of IJCAI, pp. 2233–2240 (2022)

    Google Scholar 

  28. Sun, Z., Deng, Z.H., Nie, J.Y., Tang, J.: Rotate: knowledge graph embedding by relational rotation in complex space. In: Proceedings of ICLR (2019)

    Google Scholar 

  29. Trouillon, T., Welbl, J., Riedel, S., Gaussier, É., Bouchard, G.: Complex embeddings for simple link prediction. In: Proceedings of ICML, pp. 2071–2080. PMLR (2016)

    Google Scholar 

  30. Wang, Y., et al.: A novel time constraint-based approach for knowledge graph conflict resolution. Appl. Sci.9(20), 4399 (2019)

    Google Scholar 

  31. Xu, C., Nayyeri, M., Alkhoury, F., Yazdi, H.S., Lehmann, J.: Tero: a time-aware knowledge graph embedding via temporal rotation. arXiv preprintarXiv:2010.01029 (2020)

  32. Xu, Y., Ou, J., Xu, H., Fu, L.: Temporal knowledge graph reasoning with historical contrastive learning. In: Proceedings of AAAI (2023)

    Google Scholar 

  33. Yang, B., Yih, W.t., He, X., Gao, J., Deng, L.: Embedding entities and relations for learning and inference in knowledge bases. arXiv preprintarXiv:1412.6575 (2014)

  34. Yang, Y., Wang, X., Song, M., Yuan, J., Tao, D.: Spagan: shortest path graph attention network. In: Proceedings of IJCAI, pp. 4099–4105 (2019)

    Google Scholar 

  35. Zhu, C., Chen, M., Fan, C., Cheng, G., Zhan, Y.: Learning from history: modeling temporal knowledge graphs with sequential copy-generation networks. In: Proceedings of AAAI (2020)

    Google Scholar 

Download references

Acknowledgements

This work was supported by the National Natural Science Foundation of China (Grant No. 62202075, No. 62171111, No. 62376058, No. 62376043, No. 62002052), the Natural Science Foundation of Chongqing, China (No. CSTB2022N SCQ-MSX1404, No. CSTB2023NSCQ-MSX0091), Fundamental Research Funds for the Central Universities (No. SWU-KR24008), Key Laboratory of Data Science and Smart Education, Hainan Normal University, Ministry of Education (No. DSIE202206), and the State Key Laboratory of Public Big Data, Guizhou University (No. PBD2024-0501).

Author information

Authors and Affiliations

  1. College of Computer and Information Science, Southwest University, Chongqing, 400715, China

    Lizhu Xiong & Yongpan Sheng

  2. School of Big Data and Software Engineering, Chongqing University, Chongqing, 401331, China

    Yongpan Sheng

  3. School of Information Science and Engineering, Chongqing Jiaotong University, Chongqing, 400074, China

    Lirong He

Authors
  1. Lizhu Xiong

    You can also search for this author inPubMed Google Scholar

  2. Yongpan Sheng

    You can also search for this author inPubMed Google Scholar

  3. Lirong He

    You can also search for this author inPubMed Google Scholar

Corresponding author

Correspondence toYongpan Sheng.

Editor information

Editors and Affiliations

  1. University of Macau, Macao, China

    Derek F. Wong

  2. Fudan University, Shanghai, China

    Zhongyu Wei

  3. Harbin Institute of Technology, Harbin, China

    Muyun Yang

Rights and permissions

Copyright information

© 2025 The Author(s), under exclusive license to Springer Nature Singapore Pte Ltd.

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Xiong, L., Sheng, Y., He, L. (2025). TKGR-GPRSCL: Enhance Temporal Knowledge Graph Reasoning with Graph Structure-Aware Path Representation and Supervised Contrastive Learning. In: Wong, D.F., Wei, Z., Yang, M. (eds) Natural Language Processing and Chinese Computing. NLPCC 2024. Lecture Notes in Computer Science(), vol 15360. Springer, Singapore. https://doi.org/10.1007/978-981-97-9434-8_16

Download citation

Publish with us

Societies and partnerships

Access this chapter

Subscribe and save

Springer+ Basic
¥17,985 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
JPY 3498
Price includes VAT (Japan)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
JPY 8465
Price includes VAT (Japan)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
JPY 10581
Price includes VAT (Japan)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide -see info

Tax calculation will be finalised at checkout

Purchases are for personal use only


[8]ページ先頭

©2009-2025 Movatter.jp