Movatterモバイル変換


[0]ホーム

URL:


Skip to main content

Advertisement

Springer Nature Link
Log in

Unfolding Gradient Graph Regularization for Point Cloud Color Denoising

  • Conference paper
  • First Online:

Part of the book series:Lecture Notes in Computer Science ((LNCS,volume 15036))

Abstract

Due to the cost and accuracy of current point cloud sampling equipment, the obtained point color information is often corrupted by various noises. Existing point cloud denoising algorithms mainly focus on smoothness priors and convex optimization. Their performances highly depend on model parameters whose values are determined manually and fixed throughout the iterations. In this paper, we propose to unfold gradient graph regularization with deep neural networks for point cloud color denoising. It improves the robustness of the model for denoising in different kinds of datasets and across domains. Specifically, our approach first uses a point cloud extraction network to obtain effective features for gradient computation. Then, we construct a gradient graph Laplacian regularization (GGLR) as signal smoothness prior to point cloud restoration. Finally, we introduce shallow neural networks for model parameter estimation to unfold GGLR. The proposed point cloud denoising framework is fully differentiable and can be trained end-to-end. Experiments show that the proposed algorithm unfolding outperforms several existing point cloud color denoising techniques.

The work was supported in part by the National Natural Science Foundation of China (61771141) and the Natural Science Foundation of Fujian Province (2021J01620).

This is a preview of subscription content,log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
¥17,985 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
JPY 3498
Price includes VAT (Japan)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
JPY 9380
Price includes VAT (Japan)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
JPY 11725
Price includes VAT (Japan)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide -see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Similar content being viewed by others

References

  1. Amos, B., Kolter, J.Z.: Optnet: Differentiable optimization as a layer in neural networks. In: International Conference on Machine Learning, pp. 136–145 (2017)

    Google Scholar 

  2. Chen, F., Cheung, G., Zhang, X.: Fast & robust image interpolation using gradient graph laplacian regularizer. In: IEEE International Conference on Image Processing, pp. 1964–1968 (2021)

    Google Scholar 

  3. Chen, F., Cheung, G., Zhang, X.: Manifold graph signal restoration using gradient graph laplacian regularizer. IEEE Transactions on Signal Processing (2024)

    Google Scholar 

  4. Chen, F., Cheung, G., Zhang, X.: Soft image segmentation using gradient graph laplacian regularizer. IEEE International Conference on Acoustics, Speech and Signal Processing (2024)

    Google Scholar 

  5. Chen, H., Wei, Z., Li, X., Xu, Y., Wei, M., Wang, J.: Repcd-net: Feature-aware recurrent point cloud denoising network. Int. J. Comput. Vision130(3), 615–629 (2022)

    Article  Google Scholar 

  6. Chen, Z., Li, P., Wei, Z., Chen, H., Xie, H., Wei, M., Wang, F.L.: Geogcn: Geometric dual-domain graph convolution network for point cloud denoising. In: IEEE International Conference on Acoustics, Speech and Signal Processing, pp. 1–5 (2023)

    Google Scholar 

  7. Dinesh, C., Cheung, G., Bajić, I.V.: 3d point cloud color denoising using convex graph-signal smoothness priors. In: 21st International Workshop on Multimedia Signal Processing, pp. 1–6 (2019)

    Google Scholar 

  8. d’Eon, E., Harrison, B., Myers, T., Chou, P.A.: 8i voxelized full bodies-a voxelized point cloud dataset. ISO/IEC JTC1/SC29 Joint WG11/WG1 (MPEG/JPEG) input document WG11M40059/WG1M740067(8), 11 (2017)

    Google Scholar 

  9. Gharedaghi, Y., Cheung, G., Liu, X.: Retinex-based image denoising / contrast enhancement using gradient graph laplacian regularizer. IEEE International Conference on Image Processing pp. 2710–2714 (2023)

    Google Scholar 

  10. Hu, W., Cheung, G., Kazui, M.: Graph-based dequantization of block-compressed piecewise smooth images. IEEE Signal Process. Lett.23(2), 242–246 (2015)

    Article  Google Scholar 

  11. Huang, Y., Li, S., Wang, L., Tan, T., et al.: Unfolding the alternating optimization for blind super resolution. Adv. Neural. Inf. Process. Syst.33, 5632–5643 (2020)

    Google Scholar 

  12. Irfan, M.A., Magli, E.: Point cloud denoising using joint geometry/color graph wavelets. In: Workshop on Signal Processing Systems, pp. 1–6 (2020)

    Google Scholar 

  13. Irfan, M.A., Magli, E.: Exploiting color for graph-based 3d point cloud denoising. J. Vis. Commun. Image Represent.75, 103027 (2021)

    Article  Google Scholar 

  14. Li, J., Li, M., Li, Z., Peng, S.: Super-voxel graph guided 3d point cloud denoising. In: International Conference on Computer Research and Development, pp. 276–280 (2022)

    Google Scholar 

  15. Lin, Y., Chen, F., Cheng, H., Wang, M.: Handwriting curve interpolation using gradient graph laplacian regularizer. IEEE International Conference on Multimedia and Expo pp. 1649–1654 (2023)

    Google Scholar 

  16. Liu, X., Cheung, G., Wu, X., Zhao, D.: Random walk graph laplacian-based smoothness prior for soft decoding of jpeg images. IEEE Trans. Image Process.26(2), 509–524 (2016)

    Article MathSciNet  Google Scholar 

  17. Liu, X., Zhai, D., Zhao, D., Zhai, G., Gao, W.: Progressive image denoising through hybrid graph laplacian regularization: A unified framework. IEEE Trans. Image Process.23(4), 1491–1503 (2014)

    Article MathSciNet  Google Scholar 

  18. Luo, S., Hu, W.: Score-based point cloud denoising. In: Proceedings of the IEEE/CVF International Conference on Computer Vision, pp. 4583–4592 (2021)

    Google Scholar 

  19. Ma, X., Qin, C., You, H., Ran, H., Fu, Y.: Rethinking network design and local geometry in point cloud: A simple residual mlp framework. In: International Conference on Learning Representations (2022)

    Google Scholar 

  20. Mou, C., Wang, Q., Zhang, J.: Deep generalized unfolding networks for image restoration. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 17399–17410 (2022)

    Google Scholar 

  21. Nakayama, K., Fukuta, H., Watanabe, H.: Point cloud denoising and outlier detection with local geometric structure by dynamic graph cnn. In: IEEE 12th Global Conference on Consumer Electronics, pp. 156–159 (2023)

    Google Scholar 

  22. Nouri, A., Charrier, C., Lézoray, O.: Technical report: Greyc 3D colored mesh database. Ph.D. thesis, Normandie Université, Unicaen, EnsiCaen, CNRS, GREYC UMR 6072 (2017)

    Google Scholar 

  23. Pang, J., Cheung, G.: Graph laplacian regularization for image denoising: Analysis in the continuous domain. IEEE Trans. Image Process.26(4), 1770–1785 (2017)

    Article MathSciNet  Google Scholar 

  24. Peterson, L.E.: K-nearest neighbor. Scholarpedia4(2), 1883 (2009)

    Article  Google Scholar 

  25. Pistilli, F., Fracastoro, G., Valsesia, D., Magli, E.: Learning robust graph-convolutional representations for point cloud denoising. IEEE Journal of Selected Topics in Signal Processing15(2), 402–414 (2020)

    Article  Google Scholar 

  26. Rakotosaona, M.J., La Barbera, V., Guerrero, P., Mitra, N.J., Ovsjanikov, M.: Pointcleannet: Learning to denoise and remove outliers from dense point clouds. In: Computer graphics forum, vol. 39, pp. 185–203 (2020)

    Google Scholar 

  27. Ronneberger, O., Fischer, P., Brox, T.: U-net: Convolutional networks for biomedical image segmentation. In: Medical image computing and computer-assisted intervention, pp. 234–241. Springer (2015)

    Google Scholar 

  28. Scetbon, M., Elad, M., Milanfar, P.: Deep k-svd denoising. IEEE Trans. Image Process.30, 5944–5955 (2021)

    Article MathSciNet  Google Scholar 

  29. Shuman, D.I., Narang, S.K., Frossard, P., Ortega, A., Vandergheynst, P.: The emerging field of signal processing on graphs: Extending high-dimensional data analysis to networks and other irregular domains. IEEE Signal Process. Mag.30(3), 83–98 (2013)

    Article  Google Scholar 

  30. Tang, W., Gong, Y., Qiu, G.: Feature preserving 3d mesh denoising with a dense local graph neural network. Comput. Vis. Image Underst.233, 103710 (2023)

    Article  Google Scholar 

  31. Vaksman, G., Elad, M., Milanfar, P.: Lidia: Lightweight learned image denoising with instance adaptation. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition Workshops, pp. 524–525 (2020)

    Google Scholar 

  32. Wang, Y., Sun, Y., Liu, Z., Sarma, S.E., Bronstein, M.M., Solomon, J.M.: Dynamic graph cnn for learning on point clouds. ACM Trans. Graph.38(5), 1–12 (2019)

    Article  Google Scholar 

  33. Watanabe, R., Nonaka, K., Kato, H., Pavez, E., Kobayashi, T., Ortega, A.: Point cloud denoising using normal vector-based graph wavelet shrinkage. In: IEEE International Conference on Acoustics, Speech and Signal Processing, pp. 2569–2573 (2022)

    Google Scholar 

  34. Watanabe, R., Nonaka, K., Pavez, E., Kobayashi, T., Ortega, A.: Graph-based point cloud color denoising with 3-dimensional patch-based similarity. In: IEEE International Conference on Acoustics, Speech and Signal Processing, pp. 1–5 (2023)

    Google Scholar 

  35. Wei, M., Chen, H., Zhang, Y., Xie, H., Guo, Y., Wang, J.: Geodualcnn: Geometry-supporting dual convolutional neural network for noisy point clouds. IEEE Trans. Visual Comput. Graphics29(2), 1357–1370 (2021)

    Article  Google Scholar 

  36. Xu, Z., Foi, A.: Anisotropic denoising of 3d point clouds by aggregation of multiple surface-adaptive estimates. IEEE Trans. Visual Comput. Graphics27(6), 2851–2868 (2019)

    Article  Google Scholar 

  37. Yang, D., Sun, J.: Proximal dehaze-net: A prior learning-based deep network for single image dehazing. In: Proceedings of the european conference on computer vision, pp. 702–717 (2018)

    Google Scholar 

  38. Zeng, J., Pang, J., Sun, W., Cheung, G.: Deep graph laplacian regularization for robust denoising of real images. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition Workshops, pp. 0–0 (2019)

    Google Scholar 

  39. Zhang, K., Gool, L.V., Timofte, R.: Deep unfolding network for image super-resolution. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 3217–3226 (2020)

    Google Scholar 

Download references

Author information

Authors and Affiliations

  1. College of Computer and Data Science, Fuzhou University, Fuzhou, 350108, China

    Hongtao Wang, Fei Chen & Wanling Liu

  2. College of Intelligence and Computing, Tianjin University, Tianjin, 300350, China

    Wanling Liu

  3. School of Mathematics and Statistics, Fuzhou University, Fuzhou, 350108, China

    Xunxun Zeng

Authors
  1. Hongtao Wang

    You can also search for this author inPubMed Google Scholar

  2. Fei Chen

    You can also search for this author inPubMed Google Scholar

  3. Wanling Liu

    You can also search for this author inPubMed Google Scholar

  4. Xunxun Zeng

    You can also search for this author inPubMed Google Scholar

Corresponding author

Correspondence toXunxun Zeng.

Editor information

Editors and Affiliations

  1. Peking University, Beijing, China

    Zhouchen Lin

  2. Nankai University, Tianjin, China

    Ming-Ming Cheng

  3. Chinese Academy of Sciences, Beijing, China

    Ran He

  4. Xinjiang University, Ürümqi, Xinjiang, China

    Kurban Ubul

  5. Xinjiang University, Ürümqi, China

    Wushouer Silamu

  6. Peking University, Beijing, China

    Hongbin Zha

  7. Tsinghua University, Beijing, China

    Jie Zhou

  8. Chinese Academy of Sciences, Beijing, China

    Cheng-Lin Liu

Rights and permissions

Copyright information

© 2025 The Author(s), under exclusive license to Springer Nature Singapore Pte Ltd.

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Wang, H., Chen, F., Liu, W., Zeng, X. (2025). Unfolding Gradient Graph Regularization for Point Cloud Color Denoising. In: Lin, Z.,et al. Pattern Recognition and Computer Vision. PRCV 2024. Lecture Notes in Computer Science, vol 15036. Springer, Singapore. https://doi.org/10.1007/978-981-97-8508-7_39

Download citation

Publish with us

Access this chapter

Subscribe and save

Springer+ Basic
¥17,985 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
JPY 3498
Price includes VAT (Japan)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
JPY 9380
Price includes VAT (Japan)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
JPY 11725
Price includes VAT (Japan)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide -see info

Tax calculation will be finalised at checkout

Purchases are for personal use only


[8]ページ先頭

©2009-2025 Movatter.jp