Movatterモバイル変換


[0]ホーム

URL:


Skip to main content

Advertisement

Springer Nature Link
Log in

Exploring the Impact of Various Contrastive Learning Loss Functions on Unsupervised Domain Adaptation in Person Re-identification

  • Conference paper
  • First Online:

Abstract

Person Re-identification has drawn great attention in the industrial surveillance system. This paper focuses on the unsupervised domain adaptive case using different contrastive learning loss functions at the source domain and target domain training. Although there are substantial disparities in the data distributions between the source dataset and the target dataset, distinct training strategies on the source dataset continue to exert a significant influence on the ultimate efficacy of Unsupervised Domain Adaptation results, which could be observed in the data distribution of the target dataset before undergoing unsupervised training. This paper systematically conducts the visualization and analysis of the distinct effectiveness of different loss functions on the pre-trained backbone models, especially the clustering quality. Extensive experiments on three large-scale person re-identification datasets achieve commendable results and substantiates the assertions posited in this paper.

This is a preview of subscription content,log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
¥17,985 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
JPY 3498
Price includes VAT (Japan)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
JPY 12583
Price includes VAT (Japan)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
JPY 15729
Price includes VAT (Japan)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide -see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Similar content being viewed by others

References

  1. Zheng, L., Shen, L., Tian, L., Wang, S., Wang, J., Tian, Q.: Scalable person re-identification: a benchmark. In: Proceedings of the IEEE International Conference on Computer Vision, pp. 1116–1124 (2015)

    Google Scholar 

  2. Zheng, Z., Zheng, L., Yang, Y.: Unlabeled samples generated by gan improve the person re-identification baseline in vitro. In: Proceedings of the IEEE International Conference on Computer Vision, pp. 3754–3762 (2017)

    Google Scholar 

  3. Wei, L., Zhang, S., Gao, W., Tian, Q.: Person transfer gan to bridge domain gap for person re-identification. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 79–88 (2018)

    Google Scholar 

  4. Zhong, Z., Zheng, L., Luo, Z., Li, S., Yang, Y.: Invariance matters: exemplar memory for domain adaptive person re-identification. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 598–607 (2019)

    Google Scholar 

  5. Ge, Y., Zhu, F., Chen, D., Zhao, R., et al.: Self-paced contrastive learning with hybrid memory for domain adaptive object re-id. Adv. Neural. Inf. Process. Syst.33, 11309–11321 (2020)

    Google Scholar 

  6. Ge, Y., Chen, D., Li, H.: Mutual mean-teaching: pseudo label refinery for unsupervised domain adaptation on person re-identification. arXiv preprintarXiv:2001.01526 (2020)

  7. Chen, T., Kornblith, S., Norouzi, M., Hinton, G.: A simple framework for contrastive learning of visual representations. ICML. arXiv preprintarXiv:2002.05709 (2020)

  8. He, K., Fan, H., Wu, Y., Xie, S., Girshick, R.: Momentum contrast for unsupervised visual representation learning. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 9729–9738 (2020)

    Google Scholar 

  9. Dai, Z., Wang, G., Yuan, W., Zhu, S., Tan, P.: Cluster contrast for unsupervised person re-identification. In: Proceedings of the Asian Conference on Computer Vision, pp. 1142–1160 (2022)

    Google Scholar 

  10. Wang, M., Lai, B., Huang, J., Gong, X., Hua, X.-S.: Camera-aware proxies for unsupervised person re-identification. In: Proceedings of the AAAI Conference on Artificial Intelligence, vol. 35, pp. 2764–2772 (2021)

    Google Scholar 

  11. Chen, H., Lagadec, B., Bremond, F.: ICE: inter-instance contrastive encoding for unsupervised person re-identification. In: Proceedings of the IEEE/CVF International Conference on Computer Vision, pp. 14960–14969 (2021)

    Google Scholar 

  12. Xuan, S., Zhang, S.: Intra-inter camera similarity for unsupervised person re-identification. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 11926–11935 (2021)

    Google Scholar 

  13. Deng, J., Dong, W., Socher, R., Li, L.J., Li, K., Fei-Fei, L.: Imagenet: a large-scale hierarchical image database. In: 2009 IEEE Conference on Computer Vision and Pattern Recognition, pp. 248–255. IEEE (2009)

    Google Scholar 

  14. Van der Maaten, L., Hinton, G.: Visualizing data using t-sne. J. Mach. Learn. Res.9(11) (2008)

    Google Scholar 

  15. Wu, Z., Xiong, Y., Yu, S.X., Lin, D.: Unsupervised feature learning via non-parametric instance discrimination. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 3733–3742 (2018)

    Google Scholar 

  16. Wang, D., Zhang, S.: Unsupervised person re-identification via multi-label classification. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 10981–10990 (2020)

    Google Scholar 

  17. Fu, Y., Wei, Y., Wang, G., Zhou, Y., Shi, H., Huang, T.S.: Self-similarity grouping: a simple unsupervised cross domain adaptation approach for person re-identification. In: Proceedings of the IEEE/CVF International Conference on Computer Vision, pp. 6112–6121 (2019)

    Google Scholar 

  18. Zhao, F., Liao, S., Xie, G.-S., Zhao, J., Zhang, K., Shao, L.: Unsupervised domain adaptation with noise resistible mutual-training for person re-identification. In: Vedaldi, A., Bischof, H., Brox, T., Frahm, J.-M. (eds.) ECCV 2020. LNCS, vol. 12356, pp. 526–544. Springer, Cham (2020).https://doi.org/10.1007/978-3-030-58621-8_31

    Chapter  Google Scholar 

  19. Zheng, K., Lan, C., Zeng, W., Zhang, Z., Zha, Z.-J.: Exploiting sample uncertainty for domain adaptive person re-identification. In: Proceedings of the AAAI Conference on Artificial Intelligence, vol. 35, pp. 3538–3546 (2021)

    Google Scholar 

  20. Zhou, K., Yang, Y., Cavallaro, A., Xiang, T.: Omni-scale feature learning for person re-identification. In: Proceedings of the IEEE/CVF International Conference on Computer Vision, pp. 3702–3712 (2019)

    Google Scholar 

  21. Wang, P., Zhao, Z., Fei, S., Xingyu, Z., Boulgouris, N.V.: Horeid: deep high-order mapping enhances pose alignment for person re-identification. IEEE Trans. Image Process.30, 2908–2922 (2021)

    Article MathSciNet  Google Scholar 

  22. Ram, A., Jalal, S., Jalal, A.S., Kumar, M.: A density based algorithm for discovering density varied clusters in large spatial databases. Int. J. Comput. Appl.3(6), 1–4 (2010)

    Google Scholar 

  23. Chen, W., Chen, X., Zhang, J., Huang, K.: Beyond triplet loss: a deep quadruplet network for person re-identification. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 403–412 (2017)

    Google Scholar 

  24. He, K, Zhang, X., Ren, S., Sun, J.: Deep residual learning for image recognition. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 770–778 (2016)

    Google Scholar 

  25. Zhai, Y., Ye, Q., Lu, S., Jia, M., Ji, R., Tian, Y.: Multiple expert brainstorming for domain adaptive person re-identification. In: Vedaldi, A., Bischof, H., Brox, T., Frahm, J.-M. (eds.) ECCV 2020. LNCS, vol. 12352, pp. 594–611. Springer, Cham (2020).https://doi.org/10.1007/978-3-030-58571-6_35

    Chapter  Google Scholar 

  26. Zhang, M., et al.: Unsupervised domain adaptation for person re-identification via heterogeneous graph alignment. In: Proceedings of the AAAI Conference on Artificial Intelligence, vol. 35, pp. 3360–3368 (2021)

    Google Scholar 

  27. Zheng, K., Liu, W., He, L., Mei, T., Luo, J., Zha, Z.J.: Group-aware label transfer for domain adaptive person re-identification. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 5310–5319 (2021)

    Google Scholar 

Download references

Acknowledgement

This results was supported by “vanishing Regional Innovation Strategy (RIS)” through the National Research Foundation of Korea(NRF) funded by the Ministry of Education(MOE)(2021RIS-003)

Author information

Authors and Affiliations

  1. Department of Electrical, Electronic and Computer Engineering, University of Ulsan, Ulsan, 44610, Republic of Korea

    Ge Cao & Kanghyun Jo

Authors
  1. Ge Cao

    You can also search for this author inPubMed Google Scholar

  2. Kanghyun Jo

    You can also search for this author inPubMed Google Scholar

Corresponding author

Correspondence toKanghyun Jo.

Editor information

Editors and Affiliations

  1. Tokyo University of Science, Tokyo, Japan

    Go Irie

  2. Chonnam National University, Gwangju, Korea (Republic of)

    Choonsung Shin

  3. NEC Corporation, Kawasaki, Kanagawa, Japan

    Takashi Shibata

  4. Tokyo University of Science, Tokyo, Japan

    Kazuaki Nakamura

Rights and permissions

Copyright information

© 2024 The Author(s), under exclusive license to Springer Nature Singapore Pte Ltd.

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Cao, G., Jo, K. (2024). Exploring the Impact of Various Contrastive Learning Loss Functions on Unsupervised Domain Adaptation in Person Re-identification. In: Irie, G., Shin, C., Shibata, T., Nakamura, K. (eds) Frontiers of Computer Vision. IW-FCV 2024. Communications in Computer and Information Science, vol 2143. Springer, Singapore. https://doi.org/10.1007/978-981-97-4249-3_3

Download citation

Publish with us

Access this chapter

Subscribe and save

Springer+ Basic
¥17,985 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
JPY 3498
Price includes VAT (Japan)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
JPY 12583
Price includes VAT (Japan)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
JPY 15729
Price includes VAT (Japan)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide -see info

Tax calculation will be finalised at checkout

Purchases are for personal use only


[8]ページ先頭

©2009-2025 Movatter.jp