Movatterモバイル変換


[0]ホーム

URL:


Skip to main content

Advertisement

Springer Nature Link
Log in

A Novel Human Abnormal Posture Detection Method Based on Spatial-Topological Feature Fusion of Skeleton

  • Conference paper
  • First Online:

Part of the book series:Lecture Notes in Computer Science ((LNCS,volume 15520))

Included in the following conference series:

  • 363Accesses

Abstract

Skeletons can clearly represent human postures, while the skeleton-based human abnormal posture detection has been widely used. Previous skeleton-based methods of human abnormal posture detection are often considered from a single perspective such as joint positions, joint distances and bone angles, without fully utilizing the spatial and topological information of skeleton. To overcome these shortcomings, we propose a novel human abnormal posture detection method based on Spatial-Topological Feature Fusion (STFF) of skeleton. In this study, we present a new definition of spatial similarity of two skeletons called ‘Skeleton Keypoints Displacement Metric’, with the minimum total displacement of all skeleton keypoints. Based on the similarity, we introduce an optimal skeleton matching method to select the optimal matching skeleton from a given set of template skeletons which includes skeletons of typical normal human postures. Then the deviation between the target and the optimal matching skeleton can be regarded as spatial feature to be integrated with the topological feature which can be obtained from the topological structure of the target. At last, we employ a classification method, to achieve human abnormal posture detection. Experiments show that our method achieves state-of-the-art performance on our dataset and FallDown detection dataset.

This is a preview of subscription content,log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
¥17,985 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
JPY 3498
Price includes VAT (Japan)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
JPY 14871
Price includes VAT (Japan)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
JPY 10581
Price includes VAT (Japan)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide -see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Similar content being viewed by others

References

  1. Xu, M., Guo, L., Wu, H.C.: Robust abnormal human-posture recognition using OpenPose and multiview cross-information. IEEE Sens. J.23(11), 12370–12379 (2023)

    Article MATH  Google Scholar 

  2. Yang, X., Zhang, S., Ji, W., Song, Y., He, L., Xue, H.: SMA-GCN: a fall detection method based on spatio-temporal relationship. Multimedia Syst.30(2), 90 (2024)

    Article  Google Scholar 

  3. Garcia-Cobo, G., SanMiguel, J.C.: Human skeletons and change detection for efficient violence detection in surveillance videos. Comput. Vis. Image Underst.233, 103739 (2023)

    Article MATH  Google Scholar 

  4. Elmi, S., Bell, M., Tan, K.L.: Deep-Cogn: skeleton-based human action recognition for cognitive behavior assessment. In: 2022 IEEE 34th International Conference on Tools with Artificial Intelligence (ICTAI), pp. 692–699. IEEE (2022)

    Google Scholar 

  5. Oğuz, A., Ertuğrul, Ö.F.: Emotion recognition by skeleton-based spatial and temporal analysis. Expert Syst. Appl.238, 121981 (2024)

    Article MATH  Google Scholar 

  6. Cao, Z., Hidalgo, G., Simon, T., Wei, S., Sheikh, Y.: Openpose: realtime multi-person 2D pose estimation using part affinity fields. IEEE Trans. Pattern Anal. Mach. Intell.43(1), 172–186 (2020)

    Article  Google Scholar 

  7. Fang, H.S., et al.: Alphapose: whole-body regional multi-person pose estimation and tracking in real-time. IEEE Trans. Pattern Anal. Mach. Intell.45(6), 7157–7173 (2022)

    Article MATH  Google Scholar 

  8. Woo, Y., et al.: Classification of diabetic walking for senior citizens and personal home training system using single RGB camera through machine learning. Appl. Sci.11(19), 9029 (2021)

    Article MATH  Google Scholar 

  9. Li, X., Yu, H., Tian, S., Lin, F., Masood, U.: Multi-branch high-dimensional guided transformer-based 3D human posture estimation. Comput. Mater. Continua78(3), 3551–3564 (2024)

    Article MATH  Google Scholar 

  10. Wang, M., Li, X., Zhang, X., Zhang, Y.: Hierarchical graph attention network with pseudo-metapath for skeleton-based action recognition. Neurocomputing501, 822–833 (2022)

    Article MATH  Google Scholar 

  11. Yi, G., Wu, H., Wu, X., Li, Z., Zhao, X.: Human action recognition based on skeleton features. Comput. Sci. Inf. Syst.20(1), 537–550 (2023)

    Article MATH  Google Scholar 

  12. Zeng, X., Jiang, Y., Ding, W., Li, H., Hao, Y., Qiu, Z.: A hierarchical spatio-temporal graph convolutional neural network for anomaly detection in videos. IEEE Trans. Circuits Syst. Video Technol.33(1), 200–212 (2021)

    Article MATH  Google Scholar 

  13. Li, N., Chang, F., Liu, C.: Human-related anomalous event detection via memory-augmented Wasserstein generative adversarial network with gradient penalty. Pattern Recogn.138, 109398 (2023)

    Article  Google Scholar 

  14. Jun, K., Lee, K., Lee, S., Lee, H., Kim, M.S.: Hybrid deep neural network framework combining skeleton and gait features for pathological gait recognition. Bioengineering10(10), 1133 (2023)

    Article MATH  Google Scholar 

  15. Li, L., Yang, G., Li, Y., Zhu, D., He, L.: Abnormal sitting posture recognition based on multi-scale spatiotemporal features of skeleton graph. Eng. Appl. Artif. Intell.123, 106374 (2023)

    Article MATH  Google Scholar 

  16. Ingale, A.K., et al.: Real-time 3D reconstruction techniques applied in dynamic scenes: a systematic literature review. Comput. Sci. Rev.39, 100338 (2021)

    Article MathSciNet MATH  Google Scholar 

  17. Wang, H., Yu, B., Xia, K., Li, J., Zuo, X.: Skeleton edge motion networks for human action recognition. Neurocomputing423, 1–12 (2021)

    Article MATH  Google Scholar 

  18. Sun, K., Xiao, B., Liu, D., Wang, J.: Deep high-resolution representation learning for human pose estimation. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 5693–5703 (2019)

    Google Scholar 

  19. Xiao, B., Wu, H., Wei, Y.: Simple baselines for human pose estimation and tracking. In: Proceedings of the European conference on computer vision (ECCV), pp. 466–481 (2018)

    Google Scholar 

  20. Kuhn, H.W.: The Hungarian method for the assignment problem. Naval Res. Logist. Q.2(1–2), 83–97 (1955)

    Article MathSciNet MATH  Google Scholar 

  21. Munkres, J.: Algorithms for the assignment and transportation problems. J. Soc. Ind. Appl. Math.5(1), 32–38 (1957)

    Article MathSciNet MATH  Google Scholar 

  22. Stoer, M., Wagner, F.: A simple min-cut algorithm. J. ACM (JACM)44(4), 585–591 (1997)

    Article MathSciNet MATH  Google Scholar 

  23. Rosenblatt, F.: The perceptron: a probabilistic model for information storage and organization in the brain. Psychol. Rev.65(6), 386 (1958)

    Article MATH  Google Scholar 

  24. Cortes, C.: Support-vector networks. Machine Learning (1995)

    Google Scholar 

  25. Quinlan, J.R.: Induction of decision trees. Machine Learn.1, 81–106 (1986)

    Article MATH  Google Scholar 

  26. Breiman, L.: Random forests. Machine Learn.45, 5–32 (2001)

    Article MATH  Google Scholar 

  27. LeCun, Y., Bottou, L., Bengio, Y., Haffner, P.: Gradient-based learning applied to document recognition. Proc. IEEE86(11), 2278–2324 (1998)

    Article MATH  Google Scholar 

  28. Elman, J.L.: Finding structure in time. Cogn. Sci.14(2), 179–211 (1990)

    Article MATH  Google Scholar 

  29. Li, J., Huang, Q., Du, Y., Zhen, X., Chen, S., Shao, L.: Variational abnormal behavior detection with motion consistency. IEEE Trans. Image Process.31, 275–286 (2021)

    Article MATH  Google Scholar 

  30. Chandrakala, S., Deepak, K., Vignesh, L.: Bag-of-event-models based embeddings for detecting anomalies in surveillance videos. Expert Syst. Appl.190, 116168 (2022)

    Article MATH  Google Scholar 

  31. Zhao, R., et al.: Abnormal behavior detection based on dynamic pedestrian centroid model: case study on u-turn and fall-down. IEEE Trans. Intell. Transp. Syst.24(8), 8066–8078 (2023)

    Article MATH  Google Scholar 

  32. Luo, W., Liu, W., Gao, S.: Normal graph: spatial temporal graph convolutional networks based prediction network for skeleton based video anomaly detection. Neurocomputing444, 332–337 (2021)

    Article MATH  Google Scholar 

Download references

Acknowledgments

This work was supported in part by the Natural Science Foundation of Shandong Province (No.ZR2021MF124). Yuefeng Ma is the corresponding author.

Author information

Authors and Affiliations

  1. Qufu Normal University, Rizhao, 276800, China

    Yuefeng Ma, Zhiqi Cheng & Deheng Liu

  2. Qufu Normal University, Jining, 273100, China

    Shiying Tang

Authors
  1. Yuefeng Ma

    You can also search for this author inPubMed Google Scholar

  2. Zhiqi Cheng

    You can also search for this author inPubMed Google Scholar

  3. Deheng Liu

    You can also search for this author inPubMed Google Scholar

  4. Shiying Tang

    You can also search for this author inPubMed Google Scholar

Corresponding author

Correspondence toYuefeng Ma.

Editor information

Editors and Affiliations

  1. Nagoya University, Nagoya, Japan

    Ichiro Ide

  2. Centre of Research & Technology, Thermi, Greece

    Ioannis Kompatsiaris

  3. Chinese Academy of Sciences, Beijing, China

    Changsheng Xu

  4. The University of Electro-Communications, Tokyo, Japan

    Keiji Yanai

  5. National Cheng Kung University, Tainan City, Taiwan

    Wei-Ta Chu

  6. Mukogawa Women's University, Nishinomiya, Japan

    Naoko Nitta

  7. Simula, Oslo, Norway

    Michael Riegler

  8. The University of Tokyo, Tokyo, Japan

    Toshihiko Yamasaki

Rights and permissions

Copyright information

© 2025 The Author(s), under exclusive license to Springer Nature Singapore Pte Ltd.

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Ma, Y., Cheng, Z., Liu, D., Tang, S. (2025). A Novel Human Abnormal Posture Detection Method Based on Spatial-Topological Feature Fusion of Skeleton. In: Ide, I.,et al. MultiMedia Modeling. MMM 2025. Lecture Notes in Computer Science, vol 15520. Springer, Singapore. https://doi.org/10.1007/978-981-96-2054-8_4

Download citation

Publish with us

Access this chapter

Subscribe and save

Springer+ Basic
¥17,985 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
JPY 3498
Price includes VAT (Japan)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
JPY 14871
Price includes VAT (Japan)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
JPY 10581
Price includes VAT (Japan)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide -see info

Tax calculation will be finalised at checkout

Purchases are for personal use only


[8]ページ先頭

©2009-2025 Movatter.jp