Movatterモバイル変換


[0]ホーム

URL:


Skip to main content

Advertisement

Springer Nature Link
Log in

A Scheme of Dynamic Location Privacy-Preserving with Blockchain in Intelligent Transportation System

  • Conference paper
  • First Online:

Abstract

In the promotion process of the Internet of Vehicles (IoV), location privacy issues arise when large-scale transmissions are applied. The current solutions for addressing location privacy issues in IoV are hindered by several pain points, including limited effectiveness, scalability challenges, and reliance on a single privacy mechanism. While a blockchain-based method for preserving location privacy has been proposed, there remains an academic concern regarding the suitability of such a scheme. In this paper, we propose a Dirichlet-based location privacy-preserving scheme for IoV, oriented towards vehicle density awareness and adjustable sensitivity by a certified organization. This scheme is applicable to intelligent transportation systems and addresses the limitations of current blockchain-based methods for preserving location privacy. Finally, we implement the proposed scheme in an industrial blockchain, evaluating its performance and conducting a theoretical analysis from security and privacy perspectives.

This is a preview of subscription content,log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
¥17,985 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
JPY 3498
Price includes VAT (Japan)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
JPY 7549
Price includes VAT (Japan)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
JPY 9437
Price includes VAT (Japan)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide -see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

References

  1. Rathore, S., Wook Kwon, B., Park, J.H.: BlockSecIoTNet: blockchain-based decentralized security architecture for IoT network. J. Netw. Comput. Appl.143, 167–177 (2019).https://doi.org/10.1016/j.jnca.2019.06.019

    Article MATH  Google Scholar 

  2. Abishu, H.N., Seid, A.M., Yacob, Y.H., Ayall, T., Sun, G., Liu, G.: Consensus mechanism for blockchain-enabled vehicle-to-vehicle energy trading in the internet of electric vehicles. IEEE Trans. Veh. Technol.71(1), 946–960 (2021)

    Article  Google Scholar 

  3. Aggarwal, S., Kumar, N.: A consortium blockchain-based energy trading for demand response management in vehicle-to-grid. IEEE Trans. Veh. Technol.70(9), 9480–9494 (2021)

    Article MATH  Google Scholar 

  4. Alladi, T., Chamola, V., Sahu, N., Venkatesh, V., Goyal, A., Guizani, M.: A comprehensive survey on the applications of blockchain for securing vehicular networks. IEEE Commun. Surv. Tut.24(2), 1212–1239 (2022).https://doi.org/10.1109/COMST.2022.3160925

    Article  Google Scholar 

  5. Buzachis, A., Filocamo, B., Fazio, M., Ruiz, J.A., Sotelo, M.Á., Villari, M.: Distributed priority based management of road intersections using blockchain. In: 2019 IEEE Symposium on Computers and Communications (ISCC), pp. 1159–1164. IEEE (2019)

    Google Scholar 

  6. Dwork, C., Rothblum, G.N.: Concentrated differential privacy. CoRR abs/1603.01887 (2016).http://arxiv.org/abs/1603.01887

  7. Farooq, U., Javaid, N.: Blockchain based decentralized vehicular communication system and smart payment method. Management6(7), 8

    Google Scholar 

  8. Gohari, P., Wu, B., Hale, M., Topcu, U.: The dirichlet mechanism for differential privacy on the unit simplex. In: 2020 American Control Conference (ACC), pp. 1253–1258. IEEE (2020)

    Google Scholar 

  9. Gohari, P., Wu, B., Hawkins, C., Hale, M., Topcu, U.: Differential privacy on the unit simplex via the dirichlet mechanism. IEEE Trans. Inf. Forensics Secur.16, 2326–2340 (2021)

    Article MATH  Google Scholar 

  10. Li, B., Liang, R., Zhu, D., Chen, W., Lin, Q.: Blockchain-based trust management model for location privacy preserving in VANET. IEEE Trans. Intell. Transp. Syst.22(6), 3765–3775 (2020)

    Article MATH  Google Scholar 

  11. Liang, L., Ye, H., Li, G.Y.: Toward intelligent vehicular networks: a machine learning framework. IEEE Internet Things J.6(1), 124–135 (2019)

    Article MATH  Google Scholar 

  12. Liang, R., Li, B., Song, X.: Blockchain-based privacy preserving trust management model in VANET. In: Yang, X., Wang, C.-D., Islam, M.S., Zhang, Z. (eds.) ADMA 2020. LNCS (LNAI), vol. 12447, pp. 465–479. Springer, Cham (2020).https://doi.org/10.1007/978-3-030-65390-3_36

    Chapter MATH  Google Scholar 

  13. Liu, Y., et al.: VRepChain: a decentralized and privacy-preserving reputation system for social internet of vehicles based on blockchain. IEEE Trans. Veh. Technol. (2022)

    Google Scholar 

  14. Ma, Z., Zhang, T., Liu, X., Li, X., Ren, K.: Real-time privacy-preserving data release over vehicle trajectory. IEEE Trans. Veh. Technol.68(8), 8091–8102 (2019)

    Article  Google Scholar 

  15. Peng, T., Liu, J., Chen, J., Wang, G.: A privacy-preserving crowdsensing system with muti-blockchain. In: 2020 IEEE 19th International Conference on Trust, Security and Privacy in Computing and Communications (TrustCom), pp. 1944–1949 (2020).https://doi.org/10.1109/TrustCom50675.2020.00265

  16. Prince, P., Lovesum, S.: Privacy enforced access control model for secured data handling in cloud-based pervasive health care system. SN Comput. Sci.1(5), 1–8 (2020)

    Article MATH  Google Scholar 

  17. Qian, Y., Ma, Y., Chen, J., Wu, D., Tian, D., Hwang, K.: Optimal location privacy preserving and service quality guaranteed task allocation in vehicle-based crowdsensing networks. IEEE Trans. Intell. Transp. Syst.22(7), 4367–4375 (2021).https://doi.org/10.1109/TITS.2021.3086837

    Article MATH  Google Scholar 

  18. Qiu, D., Wang, Y., Zhang, T., Sun, M., Strbac, G.: Hybrid multi-agent reinforcement learning for electric vehicle resilience control towards a low-carbon transition. IEEE Trans. Ind. Inf. (2022)

    Google Scholar 

  19. Singh, P.K., Singh, R., Nandi, S.K., Ghafoor, K.Z., Rawat, D.B., Nandi, S.: Blockchain-based adaptive trust management in internet of vehicles using smart contract. IEEE Trans. Intell. Transp. Syst.22(6), 3616–3630 (2020)

    Article MATH  Google Scholar 

  20. Storck, C.R., Duarte-Figueiredo, F.: A survey of 5G technology evolution, standards, and infrastructure associated with vehicle-to-everything communications by internet of vehicles. IEEE Access8, 117593–117614 (2020)

    Article MATH  Google Scholar 

  21. Szott, S., et al.: Wi-Fi meets ML: a survey on improving IEEE 802.11 performance with machine learning. IEEE Commun. Surv. Tut.24(3), 1843–1893 (2022).https://doi.org/10.1109/COMST.2022.3179242

    Article MATH  Google Scholar 

  22. Wang, M., Zhu, T., Zhang, T., Zhang, J., Yu, S., Zhou, W.: Security and privacy in 6G networks: new areas and new challenges. Digit. Commun. Netw.6(3), 281–291 (2020)

    Article MATH  Google Scholar 

  23. Wang, M., Zhu, T., Zuo, X., Yang, M., Yu, S., Zhou, W.: Differentially private crowdsourcing with the public and private blockchain. IEEE Internet Things J. (2023)

    Google Scholar 

  24. Wang, M., Zhu, T., Zuo, X., Ye, D., Yu, S., Zhou, W.: Blockchain empowered multi-agent systems: advancing IoT security and transaction efficiency. IEEE Internet Things J. (2023)

    Google Scholar 

  25. Xu, H., Zhu, T., Zhang, L., Zhou, W., Yu, P.S.: Machine unlearning: a survey. ACM Comput. Surv.56(1) (2023).https://doi.org/10.1145/3603620

  26. Xu, X., Sun, G., Luo, L., Cao, H., Yu, H., Vasilakos, A.V.: Latency performance modeling and analysis for hyperledger fabric blockchain network. Inf. Process. Manage.58(1), 102436 (2021)

    Article MATH  Google Scholar 

  27. Ye, D., Zhu, T., Cheng, Z., Zhou, W., Philip, S.Y.: Differential advising in multiagent reinforcement learning. IEEE Trans. Cybern.52(6), 5508–5521 (2020)

    Article  Google Scholar 

  28. Ye, D., Zhu, T., Zhu, C., Zhou, W., Philip, S.Y.: Model-based self-advising for multi-agent learning. IEEE Trans. Neural Netw. Learn. Syst. (2022)

    Google Scholar 

  29. Zhang, L., Zhu, T., Hussain, F.K., Ye, D., Zhou, W.: A game-theoretic method for defending against advanced persistent threats in cyber systems. IEEE Trans. Inf. Forensics Secur.18, 1349–1364 (2022)

    Article MATH  Google Scholar 

  30. Zhou, S., Liu, C., Ye, D., Zhu, T., Zhou, W., Yu, P.S.: Adversarial attacks and defenses in deep learning: from a perspective of cybersecurity. ACM Comput. Surv.55(8), 1–39 (2022)

    Article MATH  Google Scholar 

  31. Zou, S., Xi, J., Wang, H., Xu, G.: CrowdBLPS: a blockchain-based location-privacy-preserving mobile crowdsensing system. IEEE Trans. Ind. Inf.16(6), 4206–4218 (2019)

    Article MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

  1. University of Technology Sydney, Ultimo, 2007, Australia

    Xuhan Zuo, Dayong Ye & Shui Yu

  2. City University of Macau, Macao, Macao, Special Administrative Region of China

    Minghao Wang

Authors
  1. Xuhan Zuo

    You can also search for this author inPubMed Google Scholar

  2. Minghao Wang

    You can also search for this author inPubMed Google Scholar

  3. Dayong Ye

    You can also search for this author inPubMed Google Scholar

  4. Shui Yu

    You can also search for this author inPubMed Google Scholar

Corresponding author

Correspondence toShui Yu.

Editor information

Editors and Affiliations

  1. City University of Macau, Macau, China

    Tianqing Zhu

  2. Guangzhou University, Guangzhou, China

    Jin Li

  3. University of Salerno, Fisciano, Italy

    Aniello Castiglione

Rights and permissions

Copyright information

© 2025 The Author(s), under exclusive license to Springer Nature Singapore Pte Ltd.

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Zuo, X., Wang, M., Ye, D., Yu, S. (2025). A Scheme of Dynamic Location Privacy-Preserving with Blockchain in Intelligent Transportation System. In: Zhu, T., Li, J., Castiglione, A. (eds) Algorithms and Architectures for Parallel Processing. ICA3PP 2024. Lecture Notes in Computer Science, vol 15251. Springer, Singapore. https://doi.org/10.1007/978-981-96-1525-4_2

Download citation

Publish with us

Access this chapter

Subscribe and save

Springer+ Basic
¥17,985 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
JPY 3498
Price includes VAT (Japan)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
JPY 7549
Price includes VAT (Japan)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
JPY 9437
Price includes VAT (Japan)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide -see info

Tax calculation will be finalised at checkout

Purchases are for personal use only


[8]ページ先頭

©2009-2025 Movatter.jp