Movatterモバイル変換


[0]ホーム

URL:


Skip to main content

Advertisement

Springer Nature Link
Log in

Surrogate-Assisted Artificial Bee Colony Algorithm

  • Conference paper
  • First Online:

Part of the book series:Communications in Computer and Information Science ((CCIS,volume 1565))

  • 755Accesses

Abstract

Search strategies play an essential role in the artificial bee colony (ABC) algorithm. Different optimization problems and search stages may need different search strategies. However, it is not easy to choose an appropriate search strategy efficiently. In order to select an appropriate search strategy with few evaluations, this paper proposes a surrogate-assisted ABC (called SAABC). Based on our previous work, we construct a strategy pool that contains three search strategies. Then, the radial basis function (RBF) network is applied to evaluate the offspring generated by the search strategies. The search strategy with the best evaluation value will be used to guide the population. A set of 22 classical benchmark problems with 30 dimensions are utilized to verify the performance of SAABC. Experimental results show that SAABC achieves better performance than five other ABC algorithms.

This is a preview of subscription content,log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
¥17,985 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
JPY 3498
Price includes VAT (Japan)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
JPY 10295
Price includes VAT (Japan)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
JPY 12869
Price includes VAT (Japan)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide -see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Similar content being viewed by others

References

  1. Kennedy, J., Eberhart, R.: Particle swarm optimization. In: Proceedings of ICNN’95-International Conference on Neural Networks, vol. 4, pp. 1942–1948. IEEE (1995)

    Google Scholar 

  2. Tian, D., Shi, Z.: Mpso: modified particle swarm optimization and its applications. Swarm Evol. Comput.41, 49–68 (2018)

    Article  Google Scholar 

  3. Price, K., Storn, R.M., Lampinen, J.A.: Differential evolution: a practical approach to global optimization. Springer Science & Business Media (2006)

    Google Scholar 

  4. Wu, G., Shen, X., Li, H., Chen, H., Lin, A., Suganthan, P.N.: Ensemble of differential evolution variants. Inf. Sci.423, 172–186 (2018)

    Article MathSciNet  Google Scholar 

  5. Whitley, D.: A genetic algorithm tutorial. Stat. Comput.4(2), 65–85 (1994)

    Article  Google Scholar 

  6. Metawa, N., Hassan, M.K., Elhoseny, M.: Genetic algorithm based model for optimizing bank lending decisions. Expert Syst. Appl.80, 75–82 (2017)

    Article  Google Scholar 

  7. Dorigo, M., Birattari, M., Stutzle, T.: Ant colony optimization. IEEE Comput. Intell. Mag.1(4), 28–39 (2006)

    Article  Google Scholar 

  8. Dorigo, M., Stützle, T.: Ant colony optimization: overview and recent advances. Handbook of metaheuristics, pp. 311–351 (2019)

    Google Scholar 

  9. Wang, H., Wang, W., Xiao, S., Cui, Z., Li, W., Zhu, H., Zhu, S.: Multi-strategy and dimension perturbation ensemble of artificial bee colony. In: 2019 IEEE Congress on Evolutionary Computation (CEC), pp. 697–704. IEEE (2019)

    Google Scholar 

  10. Zeng, T., Ye, T., Zhang, L., Xu, M., Wang, H., Hu, M.: Population diversity guided dimension perturbation for artificial bee colony algorithm. In: Zhang, H., Yang, Z., Zhang, Z., Wu, Z., Hao, T. (eds.) NCAA 2021. CCIS, vol. 1449, pp. 473–485. Springer, Singapore (2021).https://doi.org/10.1007/978-981-16-5188-5_34

    Chapter  Google Scholar 

  11. Karaboga, D., Basturk, B.: A powerful and efficient algorithm for numerical function optimization: artificial bee colony (abc) algorithm. J. Global Optim.39(3), 459–471 (2007)

    Article MathSciNet  Google Scholar 

  12. Cui, L., Li, G., Lin, Q., Du, Z., Gao, W., Chen, J., Lu, N.: A novel artificial bee colony algorithm with depth-first search framework and elite-guided search equation. Inf. Sci.367, 1012–1044 (2016)

    Article  Google Scholar 

  13. Zhu, G., Kwong, S.: Gbest-guided artificial bee colony algorithm for numerical function optimization. Appl. Math. Comput.217(7), 3166–3173 (2010)

    MathSciNet MATH  Google Scholar 

  14. Gao, W.f., Liu, S.y., Huang, L.l.: A novel artificial bee colony algorithm based on modified search equation and orthogonal learning. IEEE Trans. Cybern.43(3), 1011–1024 (2013)

    Google Scholar 

  15. Wang, H., Wu, Z., Rahnamayan, S., Sun, H., Liu, Y., Pan, J.S.: Multi-strategy ensemble artificial bee colony algorithm. Inf. Sci.279, 587–603 (2014)

    Google Scholar 

  16. Kiran, M.S., Hakli, H., Gunduz, M., Uguz, H.: Artificial bee colony algorithm with variable search strategy for continuous optimization. Inf. Sci.300, 140–157 (2015)

    Article MathSciNet  Google Scholar 

  17. Ye, T., Zeng, T., Zhang, L., Xu, M., Wang, H., Hu, M.: Artificial bee colony algorithm with an adaptive search manner. In: Zhang, H., Yang, Z., Zhang, Z., Wu, Z., Hao, T. (eds.) NCAA 2021. CCIS, vol. 1449, pp. 486–497. Springer, Singapore (2021).https://doi.org/10.1007/978-981-16-5188-5_35

    Chapter  Google Scholar 

  18. Regis, R.G.: Particle swarm with radial basis function surrogates for expensive black-box optimization. J. Comput. Sci.5(1), 12–23 (2014)

    Article MathSciNet  Google Scholar 

  19. Mallipeddi, R., Lee, M.: Surrogate model assisted ensemble differential evolution algorithm. In: 2012 IEEE Congress on Evolutionary Computation, pp. 1–8. IEEE (2012)

    Google Scholar 

  20. Sun, X.Y., Gong, D.W., Ma, X.P.: Directed fuzzy graph-based surrogate model-assisted interactive genetic algorithms with uncertain individual’s fitness. In: 2009 IEEE Congress on Evolutionary Computation, pp. 2395–2402. IEEE (2009)

    Google Scholar 

  21. Loshchilov, I., Schoenauer, M., Sebag, M.: A mono surrogate for multiobjective optimization. In: Proceedings of the 12th Annual Conference on Genetic and Evolutionary Computation, pp. 471–478 (2010)

    Google Scholar 

  22. Herrera, M., Guglielmetti, A., Xiao, M., Filomeno Coelho, R.: Metamodel-assisted optimization based on multiple kernel regression for mixed variables. Struct. Multidiscip. Optim.49(6), 979–991 (2014).https://doi.org/10.1007/s00158-013-1029-z

  23. Zhang, Q., Liu, W., Tsang, E., Virginas, B.: Expensive multiobjective optimization by moea/d with gaussian process model. IEEE Trans. Evol. Comput.14(3), 456–474 (2009)

    Article  Google Scholar 

  24. Buche, D., Schraudolph, N.N., Koumoutsakos, P.: Accelerating evolutionary algorithms with gaussian process fitness function models. IEEE Trans. Syst. Man Cybern. Part C (Applications and Reviews)35(2), 183–194 (2005)

    Google Scholar 

  25. Zapotecas Martínez, S., Coello Coello, C.A.: Moea/d assisted by rbf networks for expensive multi-objective optimization problems. In: Proceedings of the 15th Annual Conference on Genetic and Evolutionary Computation, pp. 1405–1412 (2013)

    Google Scholar 

  26. Sun, C., Jin, Y., Zeng, J., Yu, Y.: A two-layer surrogate-assisted particle swarm optimization algorithm. Soft. Comput.19(6), 1461–1475 (2014).https://doi.org/10.1007/s00500-014-1283-z

    Article  Google Scholar 

  27. Gaspar-Cunha, A., Vieira, A., et al.: A hybrid multi-objective evolutionary algorithm using an inverse neural network. In: Hybrid Metaheuristics, Citeseer, pp. 25–30 (2004)

    Google Scholar 

  28. Gaspar-Cunha, A., Vieira, A.: A multi-objective evolutionary algorithm using neural networks to approximate fitness evaluations. Int. J. Comput. Syst. Signals6(1), 18–36 (2005)

    Google Scholar 

  29. Karaboga, D.: An idea based on honey bee swarm for numerical optimization. Technical report (2005)

    Google Scholar 

  30. Gao, W.F., Liu, S.Y.: A modified artificial bee colony algorithm. Comput. Oper. Res.39(3), 687–697 (2012)

    Google Scholar 

  31. Hardy, R.L.: Multiquadric equations of topography and other irregular surfaces. J. Geophys. Res.76(8), 1905–1915 (1971)

    Article  Google Scholar 

  32. Powell, M.J.D.: Radial Basis Functions for Multivariable Interpolation: A Review, pp. 143–167. Clarendon Press, USA (1987)

    Google Scholar 

  33. Broomhead, D.S., Lowe, D.: Multivariable functional interpolation and adaptive networks. Complex Syst.2(3), 321–355 (1988)

    MathSciNet MATH  Google Scholar 

  34. Park, J., Sandberg, I.W.: Universal approximation using radial-basis-function networks. Neural Comput.3(2), 246–257 (1991)

    Article  Google Scholar 

  35. Cui, L., Li, G., Luo, Y., Chen, F., Ming, Z., Lu, N., Lu, J.: An enhanced artificial bee colony algorithm with dual-population framework. Swarm Evol. Comput.43, 184–206 (2018)

    Article  Google Scholar 

  36. Sun, C., Jin, Y., Cheng, R., Ding, J., Zeng, J.: Surrogate-assisted cooperative swarm optimization of high-dimensional expensive problems. IEEE Trans. Evol. Comput.21(4), 644–660 (2017)

    Article  Google Scholar 

Download references

Acknowledgment

This work was supported by the National Natural Science Foundation of China (No. 62166027), and Jiangxi Provincial Natural Science Foundation (Nos. 20212ACB212004 and 20212BAB202023).

Author information

Authors and Affiliations

  1. School of Information Engineering, Nanchang Institute of Technology, Nanchang, 330099, China

    Tao Zeng, Hui Wang, Tingyu Ye & Luqi Zhang

  2. School of Business Administration, Nanchang Institute of Technology, Nanchang, 330099, China

    Wenjun Wang

Authors
  1. Tao Zeng

    You can also search for this author inPubMed Google Scholar

  2. Hui Wang

    You can also search for this author inPubMed Google Scholar

  3. Wenjun Wang

    You can also search for this author inPubMed Google Scholar

  4. Tingyu Ye

    You can also search for this author inPubMed Google Scholar

  5. Luqi Zhang

    You can also search for this author inPubMed Google Scholar

Corresponding author

Correspondence toHui Wang.

Editor information

Editors and Affiliations

  1. Huazhong University of Science and Technology, Wuhan, China

    Linqiang Pan

  2. Taiyuan University of Science and Technology, Taiyuan, China

    Zhihua Cui

  3. Taiyuan University of Science and Technology, Taiyuan, China

    Jianghui Cai

  4. Huazhong University of Science and Technology, Wuhan, China

    Lianghao Li

Rights and permissions

Copyright information

© 2022 Springer Nature Singapore Pte Ltd.

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Zeng, T., Wang, H., Wang, W., Ye, T., Zhang, L. (2022). Surrogate-Assisted Artificial Bee Colony Algorithm. In: Pan, L., Cui, Z., Cai, J., Li, L. (eds) Bio-Inspired Computing: Theories and Applications. BIC-TA 2021. Communications in Computer and Information Science, vol 1565. Springer, Singapore. https://doi.org/10.1007/978-981-19-1256-6_19

Download citation

Publish with us

Access this chapter

Subscribe and save

Springer+ Basic
¥17,985 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
JPY 3498
Price includes VAT (Japan)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
JPY 10295
Price includes VAT (Japan)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
JPY 12869
Price includes VAT (Japan)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide -see info

Tax calculation will be finalised at checkout

Purchases are for personal use only


[8]ページ先頭

©2009-2025 Movatter.jp