Movatterモバイル変換


[0]ホーム

URL:


Skip to main content

Advertisement

Springer Nature Link
Log in

Episodic Training for Domain Generalization Using Latent Domains

  • Conference paper
  • First Online:

Abstract

Domain generalization (DG) is to learn knowledge from multiple training domain, and build a domain-agnostic model that could be used to an unseen domain. In this paper, take advantage of aggregating data method from all source and latent domains as a novel, we propose episodic training for domain generalization, aim to improve the performance during the trained model used for prediction in the unseen domain. To address this goal, we first designed an episodic training procedure that train a domain-generalized model without using domain labels. Firstly, we divide samples into latent domains via clustering, and design an episodic training procedure. Then, trains the model via adversarial learning in a way that exposes it into domain shift which decompose the model into feature extractor and classifier components, and train each component on the episodic domain. We utilize domain-invariant feature for clustering. Experiments show that our proposed method not only successfully achieves un-labeled domain generalization but also the training procedure improve the performance compared conventional DG methods.

This is a preview of subscription content,log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
¥17,985 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
JPY 3498
Price includes VAT (Japan)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
JPY 11439
Price includes VAT (Japan)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
JPY 14299
Price includes VAT (Japan)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide -see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Similar content being viewed by others

References

  1. Munkhdalai, T., Yu, H.: Meta networks. In: ICML (2017)

    Google Scholar 

  2. Ravi, S., Larochelle, H.: Optimization as a model for fewshot learning. In: ICLR (2017)

    Google Scholar 

  3. Finn, C., Abbeel, P., Levine, S.: Model-agnostic metalearning for fast adaptation of deep networks. In: ICML (2017)

    Google Scholar 

  4. Li, Y., Swersky, K., Zemel, R.: Generative moment matching networks. In: ICML (2015)

    Google Scholar 

  5. Makhzani, A., Shlens, J., Jaitly, N., Goodfellow, I., Frey, B.: Adversarial autoencoders. In: ICLR Workshop (2016)

    Google Scholar 

  6. Finn, C., Abbeel, P., Levine, S.: Model-agnostic meta-learning for fast adaptation of deep networks. In: ICML (2017)

    Google Scholar 

  7. Snell, J., Swersky, K., Zemel, R.S.: Prototypical networks for few shot learning. In: NIPS (2017)

    Google Scholar 

  8. Mishra, N., Rohaninejad, M., Chen, X., Abbeel, P.: Meta-learning with temporal convolutions. arXiv (2017)

    Google Scholar 

  9. Ravi, S., Larochelle, H.: Optimization as a model for few-shot learning. In: ICLR (2017)

    Google Scholar 

  10. Ganin, Y., Lempitsky, V.: Unsupervised domain adaptation by backpropagation. In: ICML (2015)

    Google Scholar 

  11. Li, H., Jialin Pan, S., Wang, S., Kot, A.C.: Domain generalization with adversarial feature learning. In: CVPR (2018)

    Google Scholar 

  12. Grandvalet, Y., Bengio, Y.: Semi-supervised learning by entropy minimization. In: NIPS (2005)

    Google Scholar 

  13. Long, M., Zhu, H., Wang, J., Jordan, M.I.: Unsupervised domain adaptation with residual transfer networks. In: NIPS (2016)

    Google Scholar 

  14. Zhang, Y., Tang, H., Jia, K., Tan, M.: Domain-symmetric networks for adversarial domain adaptation. In: CVPR (2019)

    Google Scholar 

  15. Gatys, L.A., Ecker, A.S., Bethge, M.: Image style transfer using convolutional neural networks. In: CVPR (2016)

    Google Scholar 

  16. Li, Y., Wang, N., Liu, J., Hou, X.: Demystifying neural style transfer. In: IJCAI (2017)

    Google Scholar 

  17. Huang, X., Belongie, S.: Arbitrary style transfer in real-time with adaptive instance normalization. In: ICCV (2017)

    Google Scholar 

  18. Munkres, J.: Algorithms for the assignment and transportation problems. J. Soc. Ind. Appl. Math.5, 32–38 (1957)

    Article MathSciNet  Google Scholar 

  19. LeCun, Y.: The MNIST database of handwritten digits (1998).https://yann.lecun.com/exdb/mnist/

  20. Fang, C., Xu, Y., Rockmore, D.N.: Unbiased metric learning: on the utilization of multiple datasets and web images for softening bias. In: ICCV (2013)

    Google Scholar 

  21. Everingham, M., Van Gool, L., Williams, C.K.I., Winn, J., Zisserman, A.: The pascal visual object classes (VOC) challenge. IJCV88, 303–338 (2010)

    Google Scholar 

  22. Russell, B.C., Torralba, A., Murphy, K.P., Freeman, W.T.: LabelMe: a database and web-based tool for image annotation. IJCV77, 157–173 (2008)

    Google Scholar 

  23. Li, F.-F., Rob, F., Pietro, P.: Learning generative visual models from few training examples: an incremental bayesian approach tested on 101 object categories. In: CVPR Workshop on Generative-Model Based Vision (2004)

    Google Scholar 

  24. Choi, M.J., Lim, J., Torralba, A.: Exploiting hierarchical context on a large database of object categories. In: CVPR (2010)

    Google Scholar 

  25. Xu, Z., Li, W., Niu, L., Xu, D.: Exploiting low-rank structure from latent domains for domain generalization. In: Fleet, D., Pajdla, T., Schiele, B., Tuytelaars, T. (eds.) ECCV 2014. LNCS, vol. 8691, pp. 628–643. Springer, Cham (2014).https://doi.org/10.1007/978-3-319-10578-9_41

    Chapter  Google Scholar 

  26. Ganin, Y., et al.: Domain-adversarial training of neural networks. JMLR17, 2096-2030 (2016)

    Google Scholar 

  27. Li, D., Yang, Y., Song, Y.-Z., Hospedales, T.: Learning to generalize: meta-learning for domain generalization. In: AAAI (2018)

    Google Scholar 

Download references

Author information

Authors and Affiliations

  1. Key Laboratory of Cognition and Intelligence Technology, China Electronics Technology Group Corporation, Beijing, 100086, China

    Bincheng Huang, Si Chen & Feng Zhang

  2. Information Science Academy, China Electronics Technology Group Corporation, Beijing, 100086, China

    Bincheng Huang, Si Chen & Feng Zhang

  3. Faculty of Science and Engineering, University of Laval, Quebec, G1V 06, Canada

    Fan Zhou

  4. State Key Laboratory of Fluid Power and Mechatronic Systems, Zhejiang University, Hangzhou, 310027, China

    Cheng Zhang

Authors
  1. Bincheng Huang

    You can also search for this author inPubMed Google Scholar

  2. Si Chen

    You can also search for this author inPubMed Google Scholar

  3. Fan Zhou

    You can also search for this author inPubMed Google Scholar

  4. Cheng Zhang

    You can also search for this author inPubMed Google Scholar

  5. Feng Zhang

    You can also search for this author inPubMed Google Scholar

Editor information

Editors and Affiliations

  1. Tsinghua University, Beijing, China

    Fuchun Sun

  2. Tsinghua University, Beijing, China

    Huaping Liu

  3. Tsinghua University, Beijing, China

    Bin Fang

Rights and permissions

Copyright information

© 2021 Springer Nature Singapore Pte Ltd.

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Huang, B., Chen, S., Zhou, F., Zhang, C., Zhang, F. (2021). Episodic Training for Domain Generalization Using Latent Domains. In: Sun, F., Liu, H., Fang, B. (eds) Cognitive Systems and Signal Processing. ICCSIP 2020. Communications in Computer and Information Science, vol 1397. Springer, Singapore. https://doi.org/10.1007/978-981-16-2336-3_7

Download citation

Publish with us

Access this chapter

Subscribe and save

Springer+ Basic
¥17,985 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
JPY 3498
Price includes VAT (Japan)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
JPY 11439
Price includes VAT (Japan)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
JPY 14299
Price includes VAT (Japan)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide -see info

Tax calculation will be finalised at checkout

Purchases are for personal use only


[8]ページ先頭

©2009-2025 Movatter.jp