Movatterモバイル変換


[0]ホーム

URL:


Skip to main content

Advertisement

Springer Nature Link
Log in

Multivariate Fault Isolation in Presence of Outliers Based on Robust Nonnegative Garrote

  • Conference paper
  • First Online:

Abstract

Fault isolation is essential to fault monitoring, which can be used to detect the cause of the fault. Commonly used methods include contribution plots, LASSO, Nonnegative garrote, construction-based methods, branch and bound algorithm (B & B), etc. However, these existing methods have shortcomings limiting their implementation when there exist vertical outliers and leverage points, Therefore, to further improve the fault prediction accuracy, this paper present a strategy based on robust nonnegative garrote (R-NNG) variable selection algorithm, which is proved to be robust to outliers in the TE process.

This work is supported by National Natural Science Foundation (NNSF) of China under Grant 61171145 and 61374044.

This is a preview of subscription content,log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
¥17,985 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
JPY 3498
Price includes VAT (Japan)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
JPY 11439
Price includes VAT (Japan)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
JPY 14299
Price includes VAT (Japan)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide -see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Similar content being viewed by others

References

  1. Zhao, C., Wang, W.: Efficient faulty variable selection and parsimonious reconstruction modelling for fault isolation. J. Process Control38, 31–41 (2016)

    Article  Google Scholar 

  2. Chiang, L.H., Russell, E.L., Braatz, R.D.: Fault Detection and Diagnosis in Industrial Systems. Springer, London (2001)

    Google Scholar 

  3. Efron, B., Hastie, T., Johnstone, I., Tibshirani, R.: Least angle regression. Ann. Statist.32(2), 407–499. (2004). With discussion, and a rejoinder by the authors

    Google Scholar 

  4. Frank, I.E., Friedman, J.H.: A statistical view of some chemometrics regression tools. Technometrics35(2), 109–135 (1993)

    Article MATH  Google Scholar 

  5. Fu, W.J.: Penalized regressions: the bridge versus the lasso. J. Comput. Graph. Statist.7(3), 397–416 (1998)

    MathSciNet  Google Scholar 

  6. Fan, J., Li, R.: Variable selection via nonconcave penalized likelihood and its oracle properties. J. Am. Statist. Assoc.96(456), 1348–1360 (2001)

    Article MathSciNet MATH  Google Scholar 

  7. Breiman, L.: Better subset regression using the nonnegative garrote. Technometrics37(4), 373–384 (1995)

    Article MathSciNet MATH  Google Scholar 

  8. Yohai, V.J.: High breakdown-point and high efficiency robust estimates for regression. Ann. Statist.15(2), 642–656 (1987)

    Article MathSciNet MATH  Google Scholar 

  9. Yohai, V.J., Zamar, R.H.: High breakdown-point estimates of regression by means of the minimization of an efficient scale. J. Am. Statist. Assoc.83(402), 406–413 (1988)

    Article MathSciNet MATH  Google Scholar 

  10. Yuan, M., Lin, Y.: On the non-negative garrote estimator. J. R. Stat. Soc. Ser. B Stat. Methodol.69(2), 143–161 (2007)

    Google Scholar 

  11. Downs, J.J., Vogel, E.F.: A plant-wide industrial process control problem. Comput. Chem. Eng.17, 245–255 (1993)

    Article  Google Scholar 

  12. Duda, R.O., Hart, P.E., Stork, D.G.: Pattern Classification, 2nd edn. Wiley New York (2012)

    Google Scholar 

  13. Fisher, R.A.: The use of multiple measurements in taxonomic problems. Ann. Eugenics, 7, 179–188 (1936)

    Google Scholar 

  14. Wang, J.G., Shieh, S.S., Jang, S.S., Wong, D.S.H., Wu, C.W.: A two-tier approach to the data-driven modeling on thermal efficiency of a BFG/coal co-firing boiler. Fuel111, 528–534 (2013)

    Google Scholar 

  15. Wang, J.G., Jang, S.S., Wong, D.S.H., Shieh, S.S., Wu, C.W.: Soft-sensor development with adaptive variable selection using nonnegative garrote. Control Eng. Practice21, 1157–1164 (2013)

    Article  Google Scholar 

  16. Breiman, L.: Better subset regression using the nonnegative garrote. Technometrics37(4), 373 (1995)

    Google Scholar 

  17. Medina, M.A., Ronchetti, E.: Robust and consistent variable selection for generalized linear and additive models. Technical report. University of Geneva, Switzerland.http://archive-ouverte.unige.ch/unige:36961 (2014)

  18. Antoniadis, A., Gijbels, I., Verhasselt, A.: Variable selection in additive models using P-splines. Technometrics54(4), 425–438 (2012)

    Article MathSciNet  Google Scholar 

  19. Antoniadis, A., Gijbels, I., Verhasselt, A.: Variable selection in varying-coefficient models using P-splines. J. Comput. Graph. Stat.21(3), 638–661 (2012)

    Article MathSciNet  Google Scholar 

  20. Gijbels, I., Vrinssen, I.: Robust nonnegative garrote variable selection in linear regression. Comput. Stat. Data Anal.85, 1–22 (2015)

    Article MathSciNet  Google Scholar 

  21. Kuang, T.H., Yan, Z., Yao, Y.: Multivariate fault isolation via variable selection in discriminant analysis. J. Process Control35, 30–40 (2015)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

  1. Shanghai Key Lab of Power Station Automation Technology, School of Mechatronical Engineering and Automation, Shanghai University, Shanghai, 200072, China

    Jianguo Wang, Zhifu Deng, Banghua Yang, Shiwei Ma & Minrui Fei

  2. Department of Chemical Engineering, National Tsing-Hua University, Hsin-Chu, 30013, Taiwan

    Yuan Yao

  3. Department of Chemical and Process Engineering, University of Surrey, Guildford, GU2 7XH, UK

    Tao Chen

Authors
  1. Jianguo Wang

    You can also search for this author inPubMed Google Scholar

  2. Zhifu Deng

    You can also search for this author inPubMed Google Scholar

  3. Banghua Yang

    You can also search for this author inPubMed Google Scholar

  4. Shiwei Ma

    You can also search for this author inPubMed Google Scholar

  5. Minrui Fei

    You can also search for this author inPubMed Google Scholar

  6. Yuan Yao

    You can also search for this author inPubMed Google Scholar

  7. Tao Chen

    You can also search for this author inPubMed Google Scholar

Corresponding author

Correspondence toZhifu Deng.

Editor information

Editors and Affiliations

  1. Nanjing University of Posts and Telecommunications, Nanjing, China

    Dong Yue

  2. Shanghai University , Shanghai, China

    Chen Peng

  3. Shanghai University , Shanghai, China

    Dajun Du

  4. Nanjing University of Posts and Telecommunications, Nanjing, China

    Tengfei Zhang

  5. Shanghai University , Shanghai, China

    Min Zheng

  6. Swinburne University of Technology, Melbourne, Victoria, Australia

    Qinglong Han

Rights and permissions

Copyright information

© 2017 Springer Nature Singapore Pte Ltd.

About this paper

Cite this paper

Wang, J.et al. (2017). Multivariate Fault Isolation in Presence of Outliers Based on Robust Nonnegative Garrote. In: Yue, D., Peng, C., Du, D., Zhang, T., Zheng, M., Han, Q. (eds) Intelligent Computing, Networked Control, and Their Engineering Applications. ICSEE LSMS 2017 2017. Communications in Computer and Information Science, vol 762. Springer, Singapore. https://doi.org/10.1007/978-981-10-6373-2_38

Download citation

Publish with us

Access this chapter

Subscribe and save

Springer+ Basic
¥17,985 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
JPY 3498
Price includes VAT (Japan)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
JPY 11439
Price includes VAT (Japan)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
JPY 14299
Price includes VAT (Japan)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide -see info

Tax calculation will be finalised at checkout

Purchases are for personal use only


[8]ページ先頭

©2009-2025 Movatter.jp