Movatterモバイル変換


[0]ホーム

URL:


Skip to main content

Advertisement

Springer Nature Link
Log in

Functional and Structural Studies of TRP Channels Heterologously Expressed in Budding Yeast

  • Chapter
  • First Online:

Part of the book series:Advances in Experimental Medicine and Biology ((AEMB,volume 704))

  • 7676Accesses

  • 18Citations

Abstract

The transient receptor potential (TRP) superfamily is one of the largest families of cation channels. The metazoan TRP family has been subdivided into major branches: TRPC, TRPA, TRPM, TRPP, TRPV, TRPML, and TRPN, while the TRPY family is found in fungi. They are involved in many physiological processes and in the pathogenesis of various disorders. An efficient high-yield expression system for TRP channels is a necessary step towards biophysical and biochemical characterization and structural analysis of these proteins, and the budding yeast,Saccharomyces cerevisiae has proven to be very useful for this purpose. In addition, genetic screens in this organism can be carried out rapidly to identify amino acid residues important for function and to generate useful mutants. Here we present an overview of current developments towards understanding TRP channel function and structure usingSaccharomyces cerevisiae as an expression system. In addition, we will summarize recent progress in understanding gating mechanisms of TRP channels using endogenously expressing TRPY channels inS. cerevisiae, and insights gained from genetic screens for mutants in mammalian channels. The discussion will focus particular attention of the use of cryo-electron microscopy (cryo-EM) to determine TRP channel structure, and outlines a “divide and concur” methodology for combining high resolution structures of TRP channel domains determined by X-ray crystallography with lower resolution techniques including cryo-EM and spectroscopy.

This is a preview of subscription content,log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+
from ¥17,985 /Month
  • Starting from 10 chapters or articles per month
  • Access and download chapters and articles from more than 300k books and 2,500 journals
  • Cancel anytime
View plans

Buy Now

Chapter
JPY 3498
Price includes VAT (Japan)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
JPY 22879
Price includes VAT (Japan)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
JPY 28599
Price includes VAT (Japan)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide -see info
Hardcover Book
JPY 28599
Price includes VAT (Japan)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide -see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Similar content being viewed by others

Explore related subjects

Discover the latest articles, books and news in related subjects, suggested using machine learning.

References

  1. Cosens DJ, Manning A (1969) Abnormal electroretinogram from a Drosophila mutant. Nature 224:285–287

    Article CAS PubMed  Google Scholar 

  2. Minke B, Wu C, Pak WL (1975) Induction of photoreceptor voltage noise in the dark in Drosophila mutant. Nature 258:84–87

    Article CAS PubMed  Google Scholar 

  3. Montell C, Rubin GM (1989) Molecular characterization of the Drosophila trp locus: a putative integral membrane protein required for phototransduction. Neuron 2:1313–1323

    Article CAS PubMed  Google Scholar 

  4. Clapham DE, Montell C, Schultz G, Julius D (2003) International Union of Pharmacology. XLIII. Compendium of voltage-gated ion channels: transient receptor potential channels. Pharmacol Rev 55:591–596

    Article PubMed  Google Scholar 

  5. Walker RG, Willingham AT, Zuker CS:A (2000) Drosophila mechanosensory transduction channel. Science 287:2229–2234

    Article CAS PubMed  Google Scholar 

  6. Shin JB, Adams D, Paukert M, Siba M, Sidi S, Levin M, Gillespie PG, Grunder S (2005) Xenopus TRPN1 (NOMPC) localizes to microtubule-based cilia in epithelial cells, including inner-ear hair cells. Proc Natl Acad Sci USA 102:12572–12577

    Article PubMed Central CAS PubMed  Google Scholar 

  7. Sidi S, Friedrich RW, Nicolson T, Nomp C (2003) TRP channel required for vertebrate sensory hair cell mechanotransduction. Science 301:96–99

    Article CAS PubMed  Google Scholar 

  8. Palmer CP, Zhou XL, Lin J, Loukin SH, Kung C, Saimi Y (2001) A TRP homolog in Saccharomyces cerevisiae forms an intracellular Ca(2+)-permeable channel in the yeast vacuolar membrane. Proc Natl Acad Sci USA 98:7801–7805

    Article PubMed Central CAS PubMed  Google Scholar 

  9. Zhou XL, Loukin SH, Coria R, Kung C, Saimi Y (2005) Heterologously expressed fungal transient receptor potential channels retain mechanosensitivity in vitro and osmotic response in vivo. Eur Biophys J 34:413–422

    Article CAS PubMed  Google Scholar 

  10. Clapham DE (2003) TRP channels as cellular sensors. Nature 426:517–524

    Article CAS PubMed  Google Scholar 

  11. Montell C (2005) The TRP superfamily of cation channels. Sci STKE 2005:re3

    PubMed  Google Scholar 

  12. Gaudet R (2008) A primer on ankyrin repeat function in TRP channels and beyond. Mol Biosyst 4:372–379

    Article PubMed Central CAS PubMed  Google Scholar 

  13. Lepage PK, Lussier MP, McDuff FO, Lavigne P, Boulay G (2009) The self-association of two N-terminal interaction domains plays an important role in the tetramerization of TRPC4. Cell Calcium 45:251–259

    Article CAS PubMed  Google Scholar 

  14. Auer-Grumbach M, Olschewski A, Papic L, Kremer H, McEntagart ME, Uhrig S, Fischer C, Frohlich E, Balint Z, Tang B, Strohmaier H, Lochmuller H, Schlotter-Weigel B, Senderek J, Krebs A, Dick KJ, Petty R, Longman C, Anderson NE, Padberg GW, Schelhaas HJ, van Ravenswaaij-Arts CM, Pieber TR, Crosby AH, Guelly C (2010) Alterations in the ankyrin domain of TRPV4 cause congenital distal SMA, scapuloperoneal SMA and HMSN2C. Nat Genet 42:160–164

    Article PubMed Central CAS PubMed  Google Scholar 

  15. Landoure G, Zdebik AA, Martinez TL, Burnett BG, Stanescu HC, Inada H, Shi Y, Taye AA, Kong L, Munns CH, Choo SS, Phelps CB, Paudel R, Houlden H, Ludlow CL, Caterina MJ, Gaudet R, Kleta R, Fischbeck KH, Sumner CJ (2010) Mutations in TRPV4 cause Charcot-Marie-Tooth disease type 2C. Nat Genet 42:170–174

    Article PubMed Central CAS PubMed  Google Scholar 

  16. Deng HX, Klein CJ, Yan J, Shi Y, Wu Y, Fecto F, Yau HJ, Yang Y, Zhai H, Siddique N, Hedley-Whyte ET, Delong R, Martina M, Dyck PJ, Siddique T (2010) Scapuloperoneal spinal muscular atrophy and CMT2C are allelic disorders caused by alterations in TRPV4. Nat Genet 42:165–169

    Article PubMed Central CAS PubMed  Google Scholar 

  17. Nilius B, Prenen J, Janssens A, Owsianik G, Wang C, Zhu MX, Voets T (2005) The selectivity filter of the cation channel TRPM4. J Biol Chem 280:22899–22906

    Article CAS PubMed  Google Scholar 

  18. Nilius B, Prenen J, Hoenderop JG, Vennekens R, Hoefs S, Weidema AF, Droogmans G, Bindels RJ (2002) Fast and slow inactivation kinetics of the Ca2+ channels ECaC1 and ECaC2 (TRPV5 and TRPV6). Role of the intracellular loop located between transmembrane segments 2 and 3. J Biol Chem 277:30852–30858

    Article CAS PubMed  Google Scholar 

  19. Venkatachalam K, Montell C (2007) TRP channels. Annu Rev Biochem 76:387–417

    Article PubMed Central CAS PubMed  Google Scholar 

  20. White JP, Cibelli M, Rei Fidalgo A, Paule CC, Noormohamed F, Urban L, Maze M, Nagy I (2010) Role of transient receptor potential and acid-sensing ion channels in peripheral inflammatory pain. Anesthesiology 112:729–741

    Article CAS PubMed  Google Scholar 

  21. Colsoul B, Nilius B, Vennekens R (2009) On the putative role of transient receptor potential cation channels in asthma. Clin Exp Allergy 39:1456–1466

    Article CAS PubMed  Google Scholar 

  22. Woudenberg-Vrenken TE, Bindels RJ, Hoenderop JG (2009) The role of transient receptor potential channels in kidney disease. Nat Rev Nephrol 5:441–449

    Article CAS PubMed  Google Scholar 

  23. Inoue R, Jian Z, Kawarabayashi Y (2009) Mechanosensitive TRP channels in cardiovascular pathophysiology. Pharmacol Ther 123:371–385

    Article CAS PubMed  Google Scholar 

  24. Cortright DN, Szallasi A (2009) TRP channels and pain. Curr Pharm Des 15:1736–1749

    Article CAS PubMed  Google Scholar 

  25. Lee LY, Gu Q (2009) Role of TRPV1 in inflammation-induced airway hypersensitivity. Curr Opin Pharmacol 9:243–249

    Article PubMed Central CAS PubMed  Google Scholar 

  26. Watanabe H, Murakami M, Ohba T, Ono K, Ito H (2009) The pathological role of transient receptor potential channels in heart disease. Circ J 73:419–427

    Article CAS PubMed  Google Scholar 

  27. Gallagher AR, Germino GG, Somlo S (2010) Molecular advances in autosomal dominant polycystic kidney disease. Adv Chronic Kidney Dis 17:118–130

    Article PubMed Central PubMed  Google Scholar 

  28. Koike C, Obara T, Uriu Y, Numata T, Sanuki R, Miyata K, Koyasu T, Ueno S, Funabiki K, Tani A, Ueda H, Kondo M, Mori Y, Tachibana M, Furukawa T (2010) TRPM1 is a component of the retinal ON bipolar cell transduction channel in the mGluR6 cascade. Proc Natl Acad Sci USA 107:332–337

    Article PubMed Central CAS PubMed  Google Scholar 

  29. van Genderen MM, Bijveld MM, Claassen YB, Florijn RJ, Pearring JN, Meire FM, McCall MA, Riemslag FC, Gregg RG, Bergen AA, Kamermans M (2009) Mutations in TRPM1 are a common cause of complete congenital stationary night blindness. Am J Hum Genet 85:730–736

    Article PubMed Central PubMed  Google Scholar 

  30. Shen Y, Heimel JA, Kamermans M, Peachey NS, Gregg RG, Nawy S (2009) A transient receptor potential-like channel mediates synaptic transmission in rod bipolar cells. J Neurosci 29:6088–6093

    Article PubMed Central CAS PubMed  Google Scholar 

  31. Morgans CW, Zhang J, Jeffrey BG, Nelson SM, Burke NS, Duvoisin RM, Brown RL (2009) TRPM1 is required for the depolarizing light response in retinal ON-bipolar cells. Proc Natl Acad Sci USA 106:19174–19178

    Article PubMed Central CAS PubMed  Google Scholar 

  32. Li Z, Sergouniotis PI, Michaelides M, Mackay DS, Wright GA, Devery S, Moore AT, Holder GE, Robson AG, Webster AR (2009) Recessive mutations of the gene TRPM1 abrogate ON bipolar cell function and cause complete congenital stationary night blindness in humans. Am J Hum Genet 85:711–719

    Article PubMed Central CAS PubMed  Google Scholar 

  33. Audo I, Kohl S, Leroy BP, Munier FL, Guillonneau X, Mohand-Said S, Bujakowska K, Nandrot EF, Lorenz B, Preising M, Kellner U, Renner AB, Bernd A, Antonio A, Moskova-Doumanova V, Lancelot ME, Poloschek CM, Drumare I, Defoort-Dhellemmes S, Wissinger B, Leveillard T, Hamel CP, Schorderet DF, De Baere E, Berger W, Jacobson SG, Zrenner E, Sahel JA, Bhattacharya SS, Zeitz C (2009) TRPM1 is mutated in patients with autosomal-recessive complete congenital stationary night blindness. Am J Hum Genet 85:720–729

    Article PubMed Central CAS PubMed  Google Scholar 

  34. Palczewski K, Kumasaka T, Hori T, Behnke CA, Motoshima H, Fox BA, Le Trong I, Teller DC, Okada T, Stenkamp RE, Yamamoto M, Miyano M (2000) Crystal structure of rhodopsin: a G protein-coupled receptor. Science 289:739–745

    Article CAS PubMed  Google Scholar 

  35. Park JH, Scheerer P, Hofmann KP, Choe HW, Ernst OP (2008) Crystal structure of the ligand-free G-protein-coupled receptor opsin. Nature 454:183–187

    Article CAS PubMed  Google Scholar 

  36. Jaakola VP, Griffith MT, Hanson MA, Cherezov V, Chien EY, Lane JR, Ijzerman AP, Stevens RC (2008) The 2.6 angstrom crystal structure of a human A2A adenosine receptor bound to an antagonist. Science 322:1211–1217

    Article PubMed Central CAS PubMed  Google Scholar 

  37. Rasmussen SG, Choi HJ, Rosenbaum DM, Kobilka TS, Thian FS, Edwards PC, Burghammer M, Ratnala VR, Sanishvili R, Fischetti RF, Schertler GF, Weis WI, Kobilka BK (2007) Crystal structure of the human beta2 adrenergic G-protein-coupled receptor. Nature 450:383–387

    Article CAS PubMed  Google Scholar 

  38. Shinoda T, Ogawa H, Cornelius F, Toyoshima C (2009) Crystal structure of the sodium-potassium pump at 2.4 A resolution. Nature 459:446–450

    Article CAS PubMed  Google Scholar 

  39. Long SB, Campbell EB, Mackinnon R (2005) Crystal structure of a mammalian voltage-dependent Shaker family K+ channel. Science 309:897–903

    Article CAS PubMed  Google Scholar 

  40. Long SB, Campbell EB, Mackinnon R (2005) Voltage sensor of Kv1.2: structural basis of electromechanical coupling. Science 309:903–908

    Article CAS PubMed  Google Scholar 

  41. Long SB, Tao X, Campbell EB, MacKinnon R (2007) Atomic structure of a voltage-dependent K+ channel in a lipid membrane-like environment. Nature 450:376–382

    Article CAS PubMed  Google Scholar 

  42. Gonzales EB, Kawate T, Gouaux E (2009) Pore architecture and ion sites in acid-sensing ion channels and P2X receptors. Nature 460:599–604

    Article PubMed Central CAS PubMed  Google Scholar 

  43. Tao X, Avalos JL, Chen J, MacKinnon R (2009) Crystal structure of the eukaryotic strong inward-rectifier K+ channel Kir2.2 at 3.1 A resolution. Science 326:1668–1674

    Article PubMed Central CAS PubMed  Google Scholar 

  44. Sobolevsky AI, Rosconi MP, Gouaux E (2009) X-ray structure, symmetry and mechanism of an AMPA-subtype glutamate receptor. Nature 462:745–756

    Article PubMed Central CAS PubMed  Google Scholar 

  45. Kawate T, Michel JC, Birdsong WT, Gouaux E (2009) Crystal structure of the ATP-gated P2X(4) ion channel in the closed state. Nature 460:592–598

    Article PubMed Central CAS PubMed  Google Scholar 

  46. Jin X, Touhey J, Gaudet R (2006) Structure of the N-terminal ankyrin repeat domain of the TRPV2 ion channel. J Biol Chem 281:25006–25010

    Article CAS PubMed  Google Scholar 

  47. McCleverty CJ, Koesema E, Patapoutian A, Lesley SA, Kreusch A (2006) Crystal structure of the human TRPV2 channel ankyrin repeat domain. Protein Sci 15:2201–2206

    Article PubMed Central CAS PubMed  Google Scholar 

  48. Lishko PV, Procko E, Jin X, Phelps CB, Gaudet R (2007) The ankyrin repeats of TRPV1 bind multiple ligands and modulate channel sensitivity. Neuron 54:905–918

    Article CAS PubMed  Google Scholar 

  49. Phelps CB, Huang RJ, Lishko PV, Wang RR, Gaudet R (2008) Structural analyses of the ankyrin repeat domain of TRPV6 and related TRPV ion channels. Biochemistry 47:2476–2484

    Article PubMed Central CAS PubMed  Google Scholar 

  50. Phelps CB, Wang RR, Choo SS, Gaudet R (2010) Differential regulation of TRPV1, TRPV3, and TRPV4 sensitivity through a conserved binding site on the ankyrin repeat domain. J Biol Chem 285:731–740

    Article PubMed Central CAS PubMed  Google Scholar 

  51. Fujiwara Y, Minor DL Jr (2008) X-ray crystal structure of a TRPM assembly domain reveals an antiparallel four-stranded coiled-coil. J Mol Biol 383:854–870

    Article PubMed Central CAS PubMed  Google Scholar 

  52. Yamaguchi H, Matsushita M, Nairn AC, Kuriyan J (2001) Crystal structure of the atypical protein kinase domain of a TRP channel with phosphotransferase activity. Mol Cell 7:1047–1057

    Article CAS PubMed  Google Scholar 

  53. Yu Y, Ulbrich MH, Li MH, Buraei Z, Chen XZ, Ong AC, Tong L, Isacoff EY, Yang J (2009) Structural and molecular basis of the assembly of the TRPP2/PKD1 complex. Proc Natl Acad Sci USA 106:11558–11563

    Article PubMed Central CAS PubMed  Google Scholar 

  54. Brondyk WH (2009) Selecting an appropriate method for expressing a recombinant protein. Methods Enzymol 463:131–147

    Article CAS PubMed  Google Scholar 

  55. Korepanova A, Pereda-Lopez A, Solomon LR, Walter KA, Lake MR, Bianchi BR, McDonald HA, Neelands TR, Shen J, Matayoshi ED, Moreland RB, Chiu ML (2009) Expression and purification of human TRPV1 in baculovirus-infected insect cells for structural studies. Protein Expr Purif 65:38–50

    Article CAS PubMed  Google Scholar 

  56. Shigematsu H, Sokabe T, Danev R, Tominaga M, Nagayama K:A (2010) 3.5-nm structure of rat TRPV4 cation channel revealed by Zernike phase-contrast cryoelectron microscopy. J Biol Chem 285:11210–11218

    Article PubMed Central CAS PubMed  Google Scholar 

  57. Standfuss J, Xie G, Edwards PC, Burghammer M, Oprian DD, Schertler GF (2007) Crystal structure of a thermally stable rhodopsin mutant. J Mol Biol 372:1179–1188

    Article PubMed Central CAS PubMed  Google Scholar 

  58. Mio K, Ogura T, Hara Y, Mori Y, Sato C (2005) The non-selective cation-permeable channel TRPC3 is a tetrahedron with a cap on the large cytoplasmic end. Biochem Biophys Res Commun 333:768–777

    Article CAS PubMed  Google Scholar 

  59. Mio K, Ogura T, Kiyonaka S, Hiroaki Y, Tanimura Y, Fujiyoshi Y, Mori Y, Sato C (2007) The TRPC3 channel has a large internal chamber surrounded by signal sensing antennas. J Mol Biol 367:373–383

    Article CAS PubMed  Google Scholar 

  60. Maruyama Y, Ogura T, Mio K, Kiyonaka S, Kato K, Mori Y, Sato C (2007) Three-dimensional reconstruction using transmission electron microscopy reveals a swollen, bell-shaped structure of transient receptor potential melastatin type 2 cation channel. J Biol Chem 282:36961–36970

    Article CAS PubMed  Google Scholar 

  61. Parcej DN, Eckhardt-Strelau L (2003) Structural characterisation of neuronal voltage-sensitive K+ channels heterologously expressed in Pichia pastoris. J Mol Biol 333:103–116

    Article CAS PubMed  Google Scholar 

  62. Nyblom M, Oberg F, Lindkvist-Petersson K, Hallgren K, Findlay H, Wikstrom J, Karlsson A, Hansson O, Booth PJ, Bill RM, Neutze R, Hedfalk K (2007) Exceptional overproduction of a functional human membrane protein. Protein Expr Purif 56:110–120

    Article CAS PubMed  Google Scholar 

  63. Tao X, Lee A, Limapichat W, Dougherty DA, MacKinnon R (2010) A gating charge transfer center in voltage sensors. Science 328:67–73

    Article PubMed Central CAS PubMed  Google Scholar 

  64. Tao X, Mackinnon R (2008) Functional analysis of Kv1.2 and paddle chimera Kv channels in planar lipid bilayers. J Mol Biol 382(1):24–33

    Article PubMed Central CAS PubMed  Google Scholar 

  65. Figler RA, Omote H, Nakamoto RK, Al-Shawi MK (2000) Use of chemical chaperones in the yeast Saccharomyces cerevisiae to enhance heterologous membrane protein expression: high-yield expression and purification of human P-glycoprotein. Arch Biochem Biophys 376:34–46

    Article CAS PubMed  Google Scholar 

  66. Hunte C, von Jagow G, Schagger H (2003) Membrane protein purification and crystallization: a practical guide. Academic Press, San Diego, CA

    Google Scholar 

  67. Denis V, Cyert MS (2002) Internal Ca(2+) release in yeast is triggered by hypertonic shock and mediated by a TRP channel homologue. J Cell Biol 156:29–34

    Article PubMed Central CAS PubMed  Google Scholar 

  68. Moiseenkova VY, Hellmich HL, Christensen BN (2003) Overexpression and purification of the vanilloid receptor in yeast (Saccharomyces cerevisiae). Biochem Biophys Res Commun 310:196–201

    Article CAS PubMed  Google Scholar 

  69. Oprian DD (1993) Expression of opsin genes in COS cells. Methods Neuro. 15:301–306

    Article  Google Scholar 

  70. Oprian DD, Molday RS, Kaufman RJ, Khorana HG (1987) Expression of a synthetic bovine rhodopsin gene in monkey kidney cells. Proc Natl Acad Sci USA 84:8874–8878

    Article PubMed Central CAS PubMed  Google Scholar 

  71. Moiseenkova-Bell VY, Stanciu LA, Serysheva II, Tobe BJ, Wensel TG (2008) Structure of TRPV1 channel revealed by electron cryomicroscopy. Proc Natl Acad Sci USA 105:7451–7455

    Article PubMed Central CAS PubMed  Google Scholar 

  72. Molday RS, MacKenzie D (1983) Monoclonal antibodies to rhodopsin: characterization, cross-reactivity, and application as structural probes. Biochemistry 22:653–660

    Article CAS PubMed  Google Scholar 

  73. Chiu W, Baker ML, Jiang W, Dougherty M, Schmid MF (2005) Electron cryomicroscopy of biological machines at subnanometer resolution. Structure (Camb) 13:363–372

    Article CAS  Google Scholar 

  74. Cheng Y, Walz T (2009) The advent of near-atomic resolution in single-particle electron microscopy. Annu Rev Biochem 78:723–742

    Article CAS PubMed  Google Scholar 

  75. Penczek P, Radermacher M, Frank J (1992) Three-dimensional reconstruction of single particles embedded in ice. Ultramicroscopy 40:33–53

    Article CAS PubMed  Google Scholar 

  76. Wang L, Sigworth FJ (2006) Cryo-EM and single particles. Physiology (Bethesda) 21:13–18

    Article  Google Scholar 

  77. Tang G, Peng L, Baldwin PR, Mann DS, Jiang W, Rees I, Ludtke SJ (2007) EMAN2: an extensible image processing suite for electron microscopy. J Struct Biol 157:38–46

    Article CAS PubMed  Google Scholar 

  78. Hohn M, Tang G, Goodyear G, Baldwin PR, Huang Z, Penczek PA, Yang C, Glaeser RM, Adams PD, Ludtke SJ (2007) SPARX a new environment for Cryo-EM image processing. J Struct Biol 157:47–55

    Article CAS PubMed  Google Scholar 

  79. Frank J, Radermacher M, Penczek P, Zhu J, Li Y, Ladjadj M, Leith A:SPIDER (1996) WEB: processing and visualization of images in 3D electron microscopy and related fields. J Struct Biol 116:190–199

    Article CAS PubMed  Google Scholar 

  80. Sato C, Ueno Y, Asai K, Takahashi K, Sato M, Engel A, Fujiyoshi Y (2001) The voltage-sensitive sodium channel is a bell-shaped molecule with several cavities. Nature 409:1047–1051

    Article CAS PubMed  Google Scholar 

  81. Serysheva II, Bare DJ, Ludtke SJ, Kettlun CS, Chiu W, Mignery GA (2003) Structure of the type 1 inositol 1,4,5-trisphosphate receptor revealed by electron cryomicroscopy. J Biol Chem 278:21319–21322

    Article CAS PubMed  Google Scholar 

  82. Sato C, Hamada K, Ogura T, Miyazawa A, Iwasaki K, Hiroaki Y, Tani K, Terauchi A, Fujiyoshi Y, Mikoshiba K (2004) Inositol 1,4,5-trisphosphate receptor contains multiple cavities and L-shaped ligand-binding domains. J Mol Biol 336:155–164

    Article CAS PubMed  Google Scholar 

  83. Wolf M, Eberhart A, Glossmann H, Striessnig J, Grigorieff N (2003) Visualization of the domain structure of an L-type Ca2+ channel using electron cryo-microscopy. J Mol Biol 332:171–182

    Article CAS PubMed  Google Scholar 

  84. Serysheva II, Ludtke SJ, Baker MR, Chiu W, Hamilton SL (2002) Structure of the voltage-gated L-type Ca2+ channel by electron cryomicroscopy. Proc Natl Acad Sci USA 99:10370–10375

    Article PubMed Central CAS PubMed  Google Scholar 

  85. Sharma MR, Jeyakumar LH, Fleischer S, Wagenknecht T (2000) Three-dimensional structure of ryanodine receptor isoform three in two conformational states as visualized by cryo-electron microscopy. J Biol Chem 275:9485–9491

    Article CAS PubMed  Google Scholar 

  86. Wagenknecht T, Samso M (2002) Three-dimensional reconstruction of ryanodine receptors. Front Biosci 7:d1464–d1474

    Article PubMed  Google Scholar 

  87. Serysheva II, Hamilton SL, Chiu W, Ludtke SJ (2005) Structure of Ca2+ release channel at 14 A resolution. J Mol Biol 345:427–431

    Article PubMed Central CAS PubMed  Google Scholar 

  88. Serysheva II, Ludtke SJ, Baker ML, Cong Y, Topf M, Eramian D, Sali A, Hamilton SL, Chiu W (2008) Subnanometer-resolution electron cryomicroscopy-based domain models for the cytoplasmic region of skeletal muscle RyR channel. Proc Natl Acad Sci USA 105:9610–9615

    Article PubMed Central CAS PubMed  Google Scholar 

  89. Jiang QX, Wang DN, MacKinnon R (2004) Electron microscopic analysis of KvAP voltage-dependent K+ channels in an open conformation. Nature 430:806–810

    Article CAS PubMed  Google Scholar 

  90. Wang L, Sigworth FJ (2009) Structure of the BK potassium channel in a lipid membrane from electron cryomicroscopy. Nature 461:292–295

    Article PubMed Central CAS PubMed  Google Scholar 

  91. Moiseenkova-Bell VY, Wensel TG (2009) Hot on the trail of TRP channel structure. J Gen Physiol 133:239–244

    Article PubMed Central CAS PubMed  Google Scholar 

  92. Frank J (2009) Single-particle reconstruction of biological macromolecules in electron microscopy – 30 years. Q Rev Biophys 42:139–158

    Article PubMed Central CAS PubMed  Google Scholar 

  93. Wolf M, Garcea RL, Grigorieff N, Harrison SC (2010) Subunit interactions in bovine papillomavirus. Proc Natl Acad Sci USA 107:6298–6303

    Article PubMed Central CAS PubMed  Google Scholar 

  94. Zhang X, Jin L, Fang Q, Hui WH, Zhou ZH (2010) 3.3 a cryo-EM structure of a nonenveloped virus reveals a priming mechanism for cell entry. Cell 141:472–482

    Article PubMed Central CAS PubMed  Google Scholar 

  95. Zhang J, Baker ML, Schroder GF, Douglas NR, Reissmann S, Jakana J, Dougherty M, Fu CJ, Levitt M, Ludtke SJ, Frydman J, Chiu W (2010) Mechanism of folding chamber closure in a group II chaperonin. Nature 463:379–383

    Article PubMed Central CAS PubMed  Google Scholar 

  96. Jiang W, Ludtke SJ (2005) Electron cryomicroscopy of single particles at subnanometer resolution. Curr Opin Struct Biol 15:571–577

    Article CAS PubMed  Google Scholar 

  97. Zhou X, Su Z, Anishkin A, Haynes WJ, Friske EM, Loukin SH, Kung C, Saimi Y (2007) Yeast screens show aromatic residues at the end of the sixth helix anchor transient receptor potential channel gate. Proc Natl Acad Sci USA 104:15555–15559

    Article PubMed Central CAS PubMed  Google Scholar 

  98. Su Z, Zhou X, Haynes WJ, Loukin SH, Anishkin A, Saimi Y, Kung C (2007) Yeast gain-of-function mutations reveal structure-function relationships conserved among different subfamilies of transient receptor potential channels. Proc Natl Acad Sci USA 104:19607–19612

    Article PubMed Central CAS PubMed  Google Scholar 

  99. Loukin S, Su Z, Zhou X, Kung C (2010) Forward-genetic analysis reveals multiple gating mechanisms of Trpv4. J Biol Chem 285(26):19884–19890

    Article PubMed Central CAS PubMed  Google Scholar 

  100. Myers BR, Bohlen CJ, Julius D (2008) A yeast genetic screen reveals a critical role for the pore helix domain in TRP channel gating. Neuron 58:362–373

    Article PubMed Central CAS PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

  1. Department of Pharmacology, Case Western Reserve University School of Medicine, Cleveland, OH, 44106, USA

    Vera Moiseenkova-Bell

  2. Verna and Marrs McLean Department of Biochemistry and Molecular Biology, Baylor College of Medicine, Houston, TX, 77030, USA

    Theodore G. Wensel

Authors
  1. Vera Moiseenkova-Bell
  2. Theodore G. Wensel

Corresponding author

Correspondence toVera Moiseenkova-Bell.

Editor information

Editors and Affiliations

  1. Dept. Clinical Research & Education, Södersjukhuset, Karolinska Institutet, Stockholm, 118 83, Sweden

    Md. Shahidul Islam

Rights and permissions

Copyright information

© 2011 Springer Science+Business Media B.V.

About this chapter

Cite this chapter

Moiseenkova-Bell, V., Wensel, T.G. (2011). Functional and Structural Studies of TRP Channels Heterologously Expressed in Budding Yeast. In: Islam, M. (eds) Transient Receptor Potential Channels. Advances in Experimental Medicine and Biology, vol 704. Springer, Dordrecht. https://doi.org/10.1007/978-94-007-0265-3_2

Download citation

Keywords

Publish with us

Access this chapter

Subscribe and save

Springer+
from ¥17,985 /Month
  • Starting from 10 chapters or articles per month
  • Access and download chapters and articles from more than 300k books and 2,500 journals
  • Cancel anytime
View plans

Buy Now

Chapter
JPY 3498
Price includes VAT (Japan)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
JPY 22879
Price includes VAT (Japan)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
JPY 28599
Price includes VAT (Japan)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide -see info
Hardcover Book
JPY 28599
Price includes VAT (Japan)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide -see info

Tax calculation will be finalised at checkout

Purchases are for personal use only


[8]ページ先頭

©2009-2026 Movatter.jp