Movatterモバイル変換


[0]ホーム

URL:


Skip to main content

Advertisement

Springer Nature Link
Log in

Multi-Channel Volumetric Neural Network for Knee Cartilage Segmentation in Cone-Beam CT

  • Conference paper
  • First Online:

Zusammenfassung

Analyzing knee cartilage thickness and strain under load can help to further the understanding of the effects of diseases like Osteoarthritis. A precise segmentation of the cartilage is a necessary prerequisite for this analysis. This segmentation task has mainly been addressed in Magnetic Resonance Imaging, and was rarely investigated on contrast-enhanced Computed Tomography, where contrast agent visualizes the border between femoral and tibial cartilage. To overcome the main drawback of manual segmentation, namely its high time investment, we propose to use a 3D Convolutional Neural Network for this task. The presented architecture consists of a V-Net with SeLu activation, and a Tversky loss function. Due to the high imbalance between very few cartilage pixels and many background pixels, a high false positive rate is to be expected. To reduce this rate, the two largest segmented point clouds are extracted using a connected component analysis, since they most likely represent the medial and lateral tibial cartilage surfaces. The resulting segmentations are compared to manual segmentations, and achieve on average a recall of 0.69, which confirms the feasibility of this approach.

This is a preview of subscription content,log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
¥17,985 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
JPY 3498
Price includes VAT (Japan)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
JPY 6948
Price includes VAT (Japan)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
JPY 8686
Price includes VAT (Japan)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide -see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

Literatur

  1. Powers CM, Ward SR, Fredericson M, et al. Patellofemoral kinematics during weight-bearing and non-weight-bearing knee extension in persons with lateral subluxation of the patella: a preliminary study. J Orthop Sports Phys Ther. 2003;33(11):677–685.

    Google Scholar 

  2. Raj A, Vishwanathan S, Ajani B, et al. Automatic knee cartilage segmentation using fully volumetric convolutional neural networks for evaluation of osteoarthritis. In: ISBI 2018. IEEE; 2018. p. 851–854.

    Google Scholar 

  3. Tabrizi PR, Zoroofi RA, Yokota F, et al. Shape-based acetabular cartilage segmentation: application to CT and MRI datasets. Int J Comput Assist Radiol Surg. 2016;11(7):1247–1265.

    Google Scholar 

  4. Baniasadipour A, Zoroofi RA, Sato Y, et al. A fully automated method for segmentation and thickness map estimation of femoral and acetabular cartilages in 3D CT images of the hip. In: ISPA 2007; 2007. p. 92–97.

    Google Scholar 

  5. Myller KAH, Honkanen JTJ, Jurvelin JS, et al. Method for segmentation of knee articular cartilages based on contrast-enhanced CT images. Ann Biomed Eng. 2018;46(11):1756–1767.

    Google Scholar 

  6. Milletari F, Navab N, Ahmadi S. V-Net: fully convolutional neural networks for volumetric medical image segmentation. In: 3DV 2016; 2016. p. 565–571.

    Google Scholar 

  7. Duchi J, Hazan E, Singer Y. Adaptive subgradient methods for online learning and stochastic optimization. J Mach Learn Res. 2011;12(Jul):2121–2159.

    Google Scholar 

  8. Salehi SSM, Erdogmus D, Gholipour A. Tversky loss function for image segmentation using 3D fully convolutional deep networks. In: MLMI 2017. Springer; 2017. p. 379–387.

    Google Scholar 

  9. Maier AK, Syben C, Stimpel B, et al. Learning with known operators reduces maximum error bounds. Nat Mach Intell. 2019;1(8):373–380.

    Google Scholar 

  10. Gomez AN, Ren M, Urtasun R, et al. The reversible residual network: backpropagation without storing activations. In: Adv Neural Inf Process Syst; 2017. p. 2214–2224.

    Google Scholar 

Download references

Author information

Authors and Affiliations

  1. Pattern Recognition Lab, Friedrich-Alexander-Universität Erlangen-Nürnberg (FAU), Erlangen, Deutschland

    Jennifer Maier, Luis Carlos Rivera Monroy, Christopher Syben & Andreas Maier

  2. Machine Learning and Data Analytics Lab, Friedrich-Alexander-Universität Erlangen-Nürnberg (FAU), Erlangen, Deutschland

    Jennifer Maier

  3. College of Engineering, Ewha Womans University, Seoul, Korea

    Yejin Jeon & Jang-Hwan Choi

  4. Stanford University, Stanford, California, USA

    Mary Elizabeth Hall, Marc Levenston & Garry Gold

  5. Siemens Healthcare GmbH, Erlangen, Deutschland

    Rebecca Fahrig

Authors
  1. Jennifer Maier

    You can also search for this author inPubMed Google Scholar

  2. Luis Carlos Rivera Monroy

    You can also search for this author inPubMed Google Scholar

  3. Christopher Syben

    You can also search for this author inPubMed Google Scholar

  4. Yejin Jeon

    You can also search for this author inPubMed Google Scholar

  5. Jang-Hwan Choi

    You can also search for this author inPubMed Google Scholar

  6. Mary Elizabeth Hall

    You can also search for this author inPubMed Google Scholar

  7. Marc Levenston

    You can also search for this author inPubMed Google Scholar

  8. Garry Gold

    You can also search for this author inPubMed Google Scholar

  9. Rebecca Fahrig

    You can also search for this author inPubMed Google Scholar

  10. Andreas Maier

    You can also search for this author inPubMed Google Scholar

Corresponding author

Correspondence toJennifer Maier.

Editor information

Editors and Affiliations

  1. Institut für Medizinische Informatik, Charité - Universitätsmedizin Berlin, Berlin, Germany

    Thomas Tolxdorff

  2. Peter L. Reichertz Institut für Medizinische Informatik, Technische Universität Braunschweig, Braunschweig, Germany

    Thomas M. Deserno

  3. Institut für Medizinische Informatik, Universität zu Lübeck, Lübeck, Germany

    Heinz Handels

  4. Lehrstuhl für Mustererkennung, Friedrich-Alexander-Universität, Erlangen, Germany

    Andreas Maier

  5. Medical Image Computing, E230, Deutsches Krebsforschungszentrum (DKFZ), Heidelberg, Germany

    Klaus H. Maier-Hein

  6. Fakultät für Informatik und Mathematik, Ostbayerische Technische Hochschule Regensburg, Regensburg, Germany

    Christoph Palm

Rights and permissions

Copyright information

© 2020 Springer Fachmedien Wiesbaden GmbH, ein Teil von Springer Nature

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Maier, J.et al. (2020). Multi-Channel Volumetric Neural Network for Knee Cartilage Segmentation in Cone-Beam CT. In: Tolxdorff, T., Deserno, T., Handels, H., Maier, A., Maier-Hein, K., Palm, C. (eds) Bildverarbeitung für die Medizin 2020. Informatik aktuell. Springer Vieweg, Wiesbaden. https://doi.org/10.1007/978-3-658-29267-6_14

Download citation

Publish with us

Access this chapter

Subscribe and save

Springer+ Basic
¥17,985 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
JPY 3498
Price includes VAT (Japan)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
JPY 6948
Price includes VAT (Japan)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
JPY 8686
Price includes VAT (Japan)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide -see info

Tax calculation will be finalised at checkout

Purchases are for personal use only


[8]ページ先頭

©2009-2025 Movatter.jp