- Jennifer Maier7,8,
- Luis Carlos Rivera Monroy7,
- Christopher Syben7,
- Yejin Jeon9,
- Jang-Hwan Choi9,
- Mary Elizabeth Hall10,
- Marc Levenston10,
- Garry Gold10,
- Rebecca Fahrig11 &
- …
- Andreas Maier7
Part of the book series:Informatik aktuell ((INFORMAT))
2149Accesses
Zusammenfassung
Analyzing knee cartilage thickness and strain under load can help to further the understanding of the effects of diseases like Osteoarthritis. A precise segmentation of the cartilage is a necessary prerequisite for this analysis. This segmentation task has mainly been addressed in Magnetic Resonance Imaging, and was rarely investigated on contrast-enhanced Computed Tomography, where contrast agent visualizes the border between femoral and tibial cartilage. To overcome the main drawback of manual segmentation, namely its high time investment, we propose to use a 3D Convolutional Neural Network for this task. The presented architecture consists of a V-Net with SeLu activation, and a Tversky loss function. Due to the high imbalance between very few cartilage pixels and many background pixels, a high false positive rate is to be expected. To reduce this rate, the two largest segmented point clouds are extracted using a connected component analysis, since they most likely represent the medial and lateral tibial cartilage surfaces. The resulting segmentations are compared to manual segmentations, and achieve on average a recall of 0.69, which confirms the feasibility of this approach.
This is a preview of subscription content,log in via an institution to check access.
Access this chapter
Subscribe and save
- Get 10 units per month
- Download Article/Chapter or eBook
- 1 Unit = 1 Article or 1 Chapter
- Cancel anytime
Buy Now
- Chapter
- JPY 3498
- Price includes VAT (Japan)
- eBook
- JPY 6948
- Price includes VAT (Japan)
- Softcover Book
- JPY 8686
- Price includes VAT (Japan)
Tax calculation will be finalised at checkout
Purchases are for personal use only
Preview
Unable to display preview. Download preview PDF.
Similar content being viewed by others
Literatur
Powers CM, Ward SR, Fredericson M, et al. Patellofemoral kinematics during weight-bearing and non-weight-bearing knee extension in persons with lateral subluxation of the patella: a preliminary study. J Orthop Sports Phys Ther. 2003;33(11):677–685.
Raj A, Vishwanathan S, Ajani B, et al. Automatic knee cartilage segmentation using fully volumetric convolutional neural networks for evaluation of osteoarthritis. In: ISBI 2018. IEEE; 2018. p. 851–854.
Tabrizi PR, Zoroofi RA, Yokota F, et al. Shape-based acetabular cartilage segmentation: application to CT and MRI datasets. Int J Comput Assist Radiol Surg. 2016;11(7):1247–1265.
Baniasadipour A, Zoroofi RA, Sato Y, et al. A fully automated method for segmentation and thickness map estimation of femoral and acetabular cartilages in 3D CT images of the hip. In: ISPA 2007; 2007. p. 92–97.
Myller KAH, Honkanen JTJ, Jurvelin JS, et al. Method for segmentation of knee articular cartilages based on contrast-enhanced CT images. Ann Biomed Eng. 2018;46(11):1756–1767.
Milletari F, Navab N, Ahmadi S. V-Net: fully convolutional neural networks for volumetric medical image segmentation. In: 3DV 2016; 2016. p. 565–571.
Duchi J, Hazan E, Singer Y. Adaptive subgradient methods for online learning and stochastic optimization. J Mach Learn Res. 2011;12(Jul):2121–2159.
Salehi SSM, Erdogmus D, Gholipour A. Tversky loss function for image segmentation using 3D fully convolutional deep networks. In: MLMI 2017. Springer; 2017. p. 379–387.
Maier AK, Syben C, Stimpel B, et al. Learning with known operators reduces maximum error bounds. Nat Mach Intell. 2019;1(8):373–380.
Gomez AN, Ren M, Urtasun R, et al. The reversible residual network: backpropagation without storing activations. In: Adv Neural Inf Process Syst; 2017. p. 2214–2224.
Author information
Authors and Affiliations
Pattern Recognition Lab, Friedrich-Alexander-Universität Erlangen-Nürnberg (FAU), Erlangen, Deutschland
Jennifer Maier, Luis Carlos Rivera Monroy, Christopher Syben & Andreas Maier
Machine Learning and Data Analytics Lab, Friedrich-Alexander-Universität Erlangen-Nürnberg (FAU), Erlangen, Deutschland
Jennifer Maier
College of Engineering, Ewha Womans University, Seoul, Korea
Yejin Jeon & Jang-Hwan Choi
Stanford University, Stanford, California, USA
Mary Elizabeth Hall, Marc Levenston & Garry Gold
Siemens Healthcare GmbH, Erlangen, Deutschland
Rebecca Fahrig
- Jennifer Maier
You can also search for this author inPubMed Google Scholar
- Luis Carlos Rivera Monroy
You can also search for this author inPubMed Google Scholar
- Christopher Syben
You can also search for this author inPubMed Google Scholar
- Yejin Jeon
You can also search for this author inPubMed Google Scholar
- Jang-Hwan Choi
You can also search for this author inPubMed Google Scholar
- Mary Elizabeth Hall
You can also search for this author inPubMed Google Scholar
- Marc Levenston
You can also search for this author inPubMed Google Scholar
- Garry Gold
You can also search for this author inPubMed Google Scholar
- Rebecca Fahrig
You can also search for this author inPubMed Google Scholar
- Andreas Maier
You can also search for this author inPubMed Google Scholar
Corresponding author
Correspondence toJennifer Maier.
Editor information
Editors and Affiliations
Institut für Medizinische Informatik, Charité - Universitätsmedizin Berlin, Berlin, Germany
Thomas Tolxdorff
Peter L. Reichertz Institut für Medizinische Informatik, Technische Universität Braunschweig, Braunschweig, Germany
Thomas M. Deserno
Institut für Medizinische Informatik, Universität zu Lübeck, Lübeck, Germany
Heinz Handels
Lehrstuhl für Mustererkennung, Friedrich-Alexander-Universität, Erlangen, Germany
Andreas Maier
Medical Image Computing, E230, Deutsches Krebsforschungszentrum (DKFZ), Heidelberg, Germany
Klaus H. Maier-Hein
Fakultät für Informatik und Mathematik, Ostbayerische Technische Hochschule Regensburg, Regensburg, Germany
Christoph Palm
Rights and permissions
Copyright information
© 2020 Springer Fachmedien Wiesbaden GmbH, ein Teil von Springer Nature
About this paper
Cite this paper
Maier, J.et al. (2020). Multi-Channel Volumetric Neural Network for Knee Cartilage Segmentation in Cone-Beam CT. In: Tolxdorff, T., Deserno, T., Handels, H., Maier, A., Maier-Hein, K., Palm, C. (eds) Bildverarbeitung für die Medizin 2020. Informatik aktuell. Springer Vieweg, Wiesbaden. https://doi.org/10.1007/978-3-658-29267-6_14
Download citation
Published:
Publisher Name:Springer Vieweg, Wiesbaden
Print ISBN:978-3-658-29266-9
Online ISBN:978-3-658-29267-6
eBook Packages:Computer Science and Engineering (German Language)
Share this paper
Anyone you share the following link with will be able to read this content:
Sorry, a shareable link is not currently available for this article.
Provided by the Springer Nature SharedIt content-sharing initiative