Part of the book series:Lecture Notes in Computer Science ((LNTCS,volume 8374))
Included in the following conference series:
1944Accesses
Abstract
In this work, we describe a Parallel Hierarchical A* (PHA*) for path-finding in real-time using the Graphics Processor Units (GPUs). The technique aims to find potential paths for many hundreds of agents by building an abstraction graph of the input map in an off-line phase and then using this representation to speed up the path-finding during the on-line phase. The approach is appropriate in the case of scenarios based on grid maps and is independent on a specific obstacle configurations. In addition, we propose also a strategy to obtain smooth paths during the search. We show that this approach fits well with the programming model of the GPUs, enabling searching for many hundreds of agents in parallel in real-time applications such as simulations. The paper describes this implementation using the Compute Unified Device Architecture programming environment, and demonstrates its advantages in terms of performance and quality of the paths founded comparing PHA* with a GPUs implementation of Real-Time Adaptive A* and the classic A* algorithm.
Chapter PDF
Similar content being viewed by others
References
Bleiweiss, A.: GPU accelerated pathfinding. In: Proceedings of the 23rd ACM SIGGRAPH/EUROGRAPHICS Symposium on Graphics Hardware, GH 2008, Aire-la-Ville, Switzerland, pp. 65–74. Eurographics Association (2008)
Botea, A., Müller, M., Schaeffer, J.: Near Optimal Hierarchical Path-Finding. Journal of Game Development 1(1), 7–28 (2004)
Erra, U., Caggianese, G.: Real-time Adaptive GPU multi-agent path planning, vol. 2, ch. 22, pp. 295–308. Morgan Kaufmann Publishers Inc. Computing Gems Jade Edition edition (2011)
Harish, P., Narayanan, P.J.: Accelerating large graph algorithms on the GPU using CUDA. In: Aluru, S., Parashar, M., Badrinath, R., Prasanna, V.K. (eds.) HiPC 2007. LNCS, vol. 4873, pp. 197–208. Springer, Heidelberg (2007)
Hart, P., Nilsson, N., Raphael, B.: A formal basis for the heuristic determination of minimum cost paths. IEEE Transactions on Systems Science and Cybernetics 4(2), 100–107 (1968)
Holte, R.C., Perez, M.B., Zimmer, R.M., MacDonald, A.J.: Hierarchical A*: searching abstraction hierarchies efficiently. In: Proceedings of the Thirteenth National Conference on Artificial Intelligence, AAAI 1996, vol. 1, pp. 530–535. AAAI Press (1996)
Katz, G.J., Kider Jr., J.T.: All-pairs shortest-paths for large graphs on the GPU. In: Proceedings of the 23rd ACM SIGGRAPH/EUROGRAPHICS Symposium on Graphics Hardware, GH 2008, Aire-la-Ville, Switzerland, pp. 47–55. Eurographics Association (2008)
Kider, J., Henderson, M., Likhachev, M., Safonova, A.: High-dimensional planning on the GPU. In: 2010 IEEE International Conference on Robotics and Automation (ICRA), pp. 2515–2522 (May 2010)
Kirk, D.B., Hwu, W.-M.W.: Programming Massively Parallel Processors: A Hands-on Approach, 1st edn. Morgan Kaufmann Publishers Inc., San Francisco (2010)
Nickolls, J., Buck, I., Garland, M., Skadron, K.: Scalable parallel programming with CUDA. Queue 6(2), 40–53 (2008)
Shekhar, S., Fetterer, A., Goyal, B.: Materialization trade-offs in hierarchical shortest path algorithms. In: Scholl, M.O., Voisard, A. (eds.) SSD 1997. LNCS, vol. 1262, pp. 94–111. Springer, Heidelberg (1997)
Stefan, E., Damian, S.: Parallel state space search on the GPU. In: International Symposium on Combinatorial Search, SoCS (2009)
Sturtevant, N.R.: Memory-efficient abstractions for pathfinding. In: Proceedings of the Third Artificial Intelligence and Interactive Digital Entertainment Conference, Stanford, California, USA, June 6-8, pp. 31–36. The AAAI Press (2007)
Author information
Authors and Affiliations
Dipartimento di Matematica, Informatica ed Economia, Università della Basilicata, Italy
Giuseppe Caggianese & Ugo Erra
- Giuseppe Caggianese
You can also search for this author inPubMed Google Scholar
- Ugo Erra
You can also search for this author inPubMed Google Scholar
Editor information
Editors and Affiliations
Rechen- und Kommunikationszentrum, RWTH Aachen, Seffenter Weg 23, 52074, Aachen, Germany
Dieter an Mey
TU Vienna, 1040, Vienna, Austria
Michael Alexander
RWTH Aachen University, Seffenter Weg 23, 52074, Aachen, Germany
Paolo Bientinesi & Carsten Clauss &
University Magna Graecia of Catanzaro, 88100, Catanzaro, Italy
Mario Cannataro
Inria Rennes - Bretagne Atlantique, 35042, Rennes, France
Alexandru Costan & Christine Morin &
University of Innsbruck, 6020, Innsbruck, Austria
Gabor Kecskemeti
Department of Computer Science, University of Pisa, 56126, Pisa, Italy
Laura Ricci
Universitat Politècnica de València, 46022, València, Spain
Julio Sahuquillo
LLNL, USA
Martin Schulz
Dipartimento di Informatica, Università di Salerno, 84084, Salerno, Italy
Vittorio Scarano
Tennessee Tech University and Oak Ridge National Laboratory, 38505, Cookeville, TN, USA
Stephen L. Scott
Technische Universität München, 80333, Munich, Germany
Josef Weidendorfer
Rights and permissions
Copyright information
© 2014 Springer-Verlag Berlin Heidelberg
About this paper
Cite this paper
Caggianese, G., Erra, U. (2014). Parallel Hierarchical A* for Multi Agent-Based Simulation on the GPU. In: an Mey, D.,et al. Euro-Par 2013: Parallel Processing Workshops. Euro-Par 2013. Lecture Notes in Computer Science, vol 8374. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-54420-0_50
Download citation
Publisher Name:Springer, Berlin, Heidelberg
Print ISBN:978-3-642-54419-4
Online ISBN:978-3-642-54420-0
eBook Packages:Computer ScienceComputer Science (R0)
Share this paper
Anyone you share the following link with will be able to read this content:
Sorry, a shareable link is not currently available for this article.
Provided by the Springer Nature SharedIt content-sharing initiative