Movatterモバイル変換


[0]ホーム

URL:


Skip to main content

Advertisement

Springer Nature Link
Log in

One-Class Multiple Instance Learning via Robust PCA for Common Object Discovery

  • Conference paper

Part of the book series:Lecture Notes in Computer Science ((LNIP,volume 7724))

Included in the following conference series:

  • 8707Accesses

Abstract

Principal component analysis (PCA), as a key component in statistical learning, has been adopted in a wide variety of applications in computer vision and machine learning. From a different angle, weakly supervised learning, more specifically multiple instance learning (MIL), allows fine-grained information to be exploited from coarsely-grained label information. In this paper, we propose an algorithm using the robust PCA (RPCA) [1] in a iterative way to perform simultaneous common object discovery and model learning under a one-class multiple instance learning setting. We show the advantage of our method on common object discovery and model learning, which needs no fine/coarse alignment in the input data; in addition, it achieves comparable results with standard two-class MIL learning algorithms but our method is learning from one-class data only.

This is a preview of subscription content,log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
¥17,985 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
JPY 3498
Price includes VAT (Japan)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
JPY 5719
Price includes VAT (Japan)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
JPY 7149
Price includes VAT (Japan)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide -see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. Candes, E., Li, X., Ma, Y., Wright, J.: Robust principal component analysis? Journal of the ACM 58 (2011)

    Google Scholar 

  2. Jolliffe, I.T.: Principal component analysis. Springer (1986)

    Google Scholar 

  3. Candes, E., Tao, T.: Near-optimal signal recovery from random projections: universal encoding strategies. IEEE Trans. Inform. Theory 52, 5406–5425 (2005)

    Article MathSciNet  Google Scholar 

  4. Peng, Y., Ganesh, A., Wright, J., Xu, W., Ma, Y.: Rasl: Robust alignment by sparse and low-rank decomposition for linearly correlated images. In: CVPR, pp. 763–770 (2010)

    Google Scholar 

  5. Dietterich, T.G., Lathrop, R.H.: Solving the multiple-instance problem with axis-parallel rectangles. Artificial Intelligence 89, 31–71 (1997)

    Article MATH  Google Scholar 

  6. Zhang, Q., Goldman, S.A.: Em-dd: An improved multiple-instance learning technique. In: Advances in Neural Information Processing Systems, pp. 1073–1080. MIT Press (2001)

    Google Scholar 

  7. Deselaers, T., Ferrari, V.: A conditional random field for multiple-instance learning. In: Proceedings of the 26th International Conference on Machine Learning (2010)

    Google Scholar 

  8. Viola, P., Platt, J.C., Zhang, C.: Multiple instance boosting for object detection. In: Advances in Neural Information Processing Systems, pp. 1419–1426. MIT Press (2006)

    Google Scholar 

  9. Russell, B.C., Efros, A.A., Sivic, J., Freeman, W.T., Zisserman, A.: Using multiple segmentations to discover objects and their extent in image collections. In: IEEE Conference on Computer Vision and Pattern Recognition (2006)

    Google Scholar 

  10. Lee, Y.J., Grauman, K.: Shape discovery from unlabeled image collections. In: IEEE Conference on Computer Vision and Pattern Recognition (2009)

    Google Scholar 

  11. Deselaers, T., Alexe, B., Ferrari, V.: Localizing objects while learning their appearance. ETHZ TR No 276, Eidgenossische Technische Hochschule Zurich (2011)

    Google Scholar 

  12. Lin, Z., Chen, M., Wu, L., Ma, Y.: The augmented lagrange multiplier method for exact recovery of corrupted low-rank matrices. UIUC Technical Report UILU-ENG-09-2215 (2009)

    Google Scholar 

  13. Maron, O., Lozano-Prez, T.: A framework for multiple-instance learning. In: Advances in Neural Information Processing Systems, pp. 570–576. MIT Press (1998)

    Google Scholar 

  14. Andrews, S., Tsochantaridis, I., Hofmann, T.: Support vector machines for multiple-instance learning. In: Advances in Neural Information Processing Systems, pp. 561–568. MIT Press (2003)

    Google Scholar 

  15. Fergus, R., Perona, P., Zisserman, A.: Object class recognition by unsupervised scale-invariant learning. In: IEEE Conference on Computer Vision and Pattern Recognition (2003)

    Google Scholar 

  16. Chum, O., Zisserman, A.: An exemplar model for learning object classes. In: IEEE Conference on Computer Vision and Pattern Recognition (2007)

    Google Scholar 

  17. Vijayanarasimhan, S., Grauman, K.: Keywords to visual categories: Multiple-instance learning for weakly supervised object categorization. In: IEEE Conference on Computer Vision and Pattern Recognition (2008)

    Google Scholar 

  18. Lee, Y.J., Grauman, K.: Object-graphs for context-aware category discovery. IEEE Transactions on Pattern Analysis and Machine Intelligence, TPAMI (2011)

    Google Scholar 

  19. Zhu, L(L.), Lin, C., Huang, H., Chen, Y., Yuille, A.L.: Unsupervised Structure Learning: Hierarchical Recursive Composition, Suspicious Coincidence and Competitive Exclusion. In: Forsyth, D., Torr, P., Zisserman, A. (eds.) ECCV 2008, Part II. LNCS, vol. 5303, pp. 759–773. Springer, Heidelberg (2008)

    Chapter  Google Scholar 

  20. Wu, Y.N., Si, Z., Gong, H., Zhu, S.C.: Learning active basis model for object detection and recognition. International Journal of Computer Vision 90, 198–235 (2010)

    Article MathSciNet  Google Scholar 

  21. Rother, C., Minka, T.P., Blake, A., Kolmogorov, V.: Cosegmentation of image pairs by histogram matching - incorporating a global constraint into mrfs. In: IEEE Conference on Computer Vision and Pattern Recognition, pp. 993–1000 (2006)

    Google Scholar 

  22. Bagon, S., Brostovski, O., Galun, M., Irani, M.: Detecting and sketching the common. In: IEEE Conference on Computer Vision and Pattern Recognition (2010)

    Google Scholar 

  23. Yang, A., Ganesh, A., Sastry, S., Ma, Y.: Fast l1-minimization algorithms and an application in robust face recognition: A review. Technical Report UCB/EECS-2010-13, EECS Department, University of California, Berkeley (2010)

    Google Scholar 

  24. Feng, J., Wei, Y., Tao, L., Zhang, C., Sun, J.: Salient object detection by composition. In: International Conference on Computer Vision (2011)

    Google Scholar 

  25. Felzenszwalb, P., Girshick, R., McAllester, D., Ramanan, D.: Object detection with discriminatively trained part based models. IEEE Transactions on Pattern Analysis and Machine Intelligence 32 (2010)

    Google Scholar 

  26. Huang, G.B., Ramesh, M., Berg, T., Learned-Miller, E.: Labeled faces in the wild: A database for studying face recognition in unconstrained environments. Technical Report 07-49, University of Massachusetts, Amherst (2007)

    Google Scholar 

  27. Ferrari, V., Tuytelaars, T., Van Gool, L.: Object Detection by Contour Segment Networks. In: Leonardis, A., Bischof, H., Pinz, A. (eds.) ECCV 2006. LNCS, vol. 3953, pp. 14–28. Springer, Heidelberg (2006)

    Chapter  Google Scholar 

  28. Ferrari, V., Jurie, F., Schmid, C.: From images to shape models for object detection. International Journal of Computer Vision 87, 284–303 (2010)

    Article  Google Scholar 

  29. Wang, H., Yang, Q., Zha, H.: Adaptive p-posterior mixture-model kernels for multiple instance learning. In: Proceedings of the 26th International Conference on Machine Learning (2008)

    Google Scholar 

  30. Zhou, Z., Sun, Y., Li, Y.: Multi-instance learning by treating instances as noni.i.d. samples. In: Proceedings of the 26th International Conference on Machine Learning (2009)

    Google Scholar 

  31. Viola, P., Jones, M.: Robust real-time face detection. International Journal of Computer Vision 57, 137–154 (2004)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

  1. Huazhong University of Science and Technology, China

    Xinggang Wang, Xiang Bai & Wenyu Liu

  2. Visual Computing Group, Microsoft Research Asia, China

    Zhengdong Zhang, Yi Ma & Zhuowen Tu

  3. Lab of Neuro Imaging and Department of Computer Science, UCLA, USA

    Zhuowen Tu

Authors
  1. Xinggang Wang

    You can also search for this author inPubMed Google Scholar

  2. Zhengdong Zhang

    You can also search for this author inPubMed Google Scholar

  3. Yi Ma

    You can also search for this author inPubMed Google Scholar

  4. Xiang Bai

    You can also search for this author inPubMed Google Scholar

  5. Wenyu Liu

    You can also search for this author inPubMed Google Scholar

  6. Zhuowen Tu

    You can also search for this author inPubMed Google Scholar

Editor information

Editors and Affiliations

  1. Department of Electrical and Computer Engineering, Seoul National University, 1 Gwanak-ro, 151-744, Gwanak-gu, Seoul, Korea

    Kyoung Mu Lee

  2. Microsoft Research Asia, No. 5, Danling st., Haidian district, 100080, Beijing, P.R. China

    Yasuyuki Matsushita

  3. School of Interactive Computing, Georgia Institute of Technology, 801 Atlantic Drive, CCB 315, 30332, Atlanta, GA, USA

    James M. Rehg

  4. Institute of Automation, National Laboratory of Pattern Recognition, Chinese Academy of Sciences, Zhong Quan Cun East Road 95, Haidian District, 100 190, Beijing, P.R. China

    Zhanyi Hu

Rights and permissions

Copyright information

© 2013 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Wang, X., Zhang, Z., Ma, Y., Bai, X., Liu, W., Tu, Z. (2013). One-Class Multiple Instance Learning via Robust PCA for Common Object Discovery. In: Lee, K.M., Matsushita, Y., Rehg, J.M., Hu, Z. (eds) Computer Vision – ACCV 2012. ACCV 2012. Lecture Notes in Computer Science, vol 7724. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-37331-2_19

Download citation

Publish with us

Access this chapter

Subscribe and save

Springer+ Basic
¥17,985 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
JPY 3498
Price includes VAT (Japan)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
JPY 5719
Price includes VAT (Japan)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
JPY 7149
Price includes VAT (Japan)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide -see info

Tax calculation will be finalised at checkout

Purchases are for personal use only


[8]ページ先頭

©2009-2025 Movatter.jp