Movatterモバイル変換


[0]ホーム

URL:


Skip to main content

Advertisement

Springer Nature Link
Log in

Clustering with Uncertainties: An Affinity Propagation-Based Approach

  • Conference paper

Part of the book series:Lecture Notes in Computer Science ((LNTCS,volume 7667))

Included in the following conference series:

  • 4064Accesses

Abstract

Clustering is a classical unsupervised learning technique which has wide applications. One popular clustering model seeks a set of centers and organizes the data into different groups, with an objective to maximize the net similarities within each cluster. In this paper, we first formulate a generalized form of the clustering model, where the similarity measure has uncertainties or changes in different states. Then we propose an affinity propagation-based algorithm, which gives an efficient and accurate solution to the generalized model. Finally we evaluate the model and the algorithm by experiments. The results have justified the usefulness of the model and demonstrate the improvements of the algorithm over other possible solutions.

This is a preview of subscription content,log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
¥17,985 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
JPY 3498
Price includes VAT (Japan)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
JPY 5719
Price includes VAT (Japan)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
JPY 7149
Price includes VAT (Japan)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide -see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. MacQueen, J.: Some methods for classification and analysis of multivariate observations. In: Le Cam, L.M., Neyman, J. (eds.) Proceedings of the Fifth Berkeley Symposium on Mathematical Statistics and Probability, vol. 1, pp. 281–297. University of California Press, Berkeley (1967)

    Google Scholar 

  2. Jain, A.K., Murty, M.N., Flynn, P.J.: Data clustering: A review. ACM Computing Surveys 31(3), 264–323 (1999)

    Article  Google Scholar 

  3. Pearl, J.: Probabilistic Reasoning in Intelligent Systems: Networks of Plausible Inference. Morgan Kaufmann Publishers, inc, San mateo (1988)

    Google Scholar 

  4. Kschischang, F.R., Frey, B.J., Loeliger, H.A.: Factor graphs and the sum-product algorithm. IEEE Transactions on Information Theory 47(2), 498–519 (2001)

    Article MathSciNet MATH  Google Scholar 

  5. Aji, S.M., McEliece, R.J.: The generalized distributive law. IEEE Transactions on Information Theory 46(2), 325–343 (2000)

    Article MathSciNet MATH  Google Scholar 

  6. Yedidia, J.S., Freeman, W.T., Weiss, Y.: Constructing free-energy approximations and generalized belief propagation algorithms. IEEE Transactions on Information Theory 51(7), 2282–2312 (2005)

    Article MathSciNet  Google Scholar 

  7. Frey, B.J., Dueck, D.: Clustering by passing messages between data points. Science 315 (2007)

    Google Scholar 

  8. Teitz, M.B., Bart, P.: Heuristic methods for estimating the generalized vertex median of a weighted graph. Operations Research 16(5), 955–961 (1968)

    Article MATH  Google Scholar 

  9. Tansel, B.C., Francis, R.L., Lowe, T.J.: Location on networks: A survey; part I: Thep-center andp-median problems. Management Science 29(4), 482–497 (1983)

    Article MathSciNet MATH  Google Scholar 

  10. Hansen, P., Mladenović, N.: Variable neighborhood search for thep-median. Location Science 5(4), 207–226 (1997)

    Article MATH  Google Scholar 

  11. Lashkari, D., Golland, P.: Convex clustering with exemplar-based models. In: Platt, J., Koller, D., Singer, Y., Roweis, S. (eds.) Advances in Neural Information Processing Systems 20, pp. 825–832. MIT Press, Cambridge (2008)

    Google Scholar 

  12. Leone, M., Weigt, M.: Clustering by soft-constraint affinity propagation: Applications to gene-expression data. Bioinformatics 23, 2708 (2007)

    Article  Google Scholar 

  13. Mézard, M.: Where are the exemplars? Science 315, 949–951 (2007)

    Article  Google Scholar 

  14. Lin, S., Kernighan, B.W.: An effective heuristic algorithm for the traveling salesman problem. Operations Research 21, 498–516 (1973)

    Article MathSciNet MATH  Google Scholar 

  15. Mézard, M.: Passing messages between disciplines. Science 301(5640), 1685–1686 (2003)

    Article  Google Scholar 

  16. Handler, G.Y., Mirchandani, P.B.: Location on Networks: Theory and Algorithms. MIT Press, Cambridge (1979)

    MATH  Google Scholar 

  17. Li, W., Xu, L., Schuurmans, D.: Facility locations revisited: An efficient belief propagation approach. In: Proceedings of the 2010 IEEE International Conference on Automation and Logistics (2010)

    Google Scholar 

  18. Li, W.: Probabilistic inference over sensor networks for clusters: Extension to multiple states. In: Proceedings of the 2012 IEEE International Conference on Information and Automation (2012)

    Google Scholar 

Download references

Author information

Authors and Affiliations

  1. Macao Polytechnic Institute, Rua de Luís Gonzaga, Macao SAR, China

    Wenye Li

Authors
  1. Wenye Li

    You can also search for this author inPubMed Google Scholar

Editor information

Editors and Affiliations

  1. Texas A&M University at Qatar, Education City, P.O. Box 23874, Doha, Qatar

    Tingwen Huang

  2. Department of Control Science and Engineering, Huazhong University of Science and Technology, 1037 Luoyu Road, 430074, Wuhan, Hubei, China

    Zhigang Zeng

  3. College of Computer Science, Chongqing University, 174 Shazhengjie Street, 400044, Chongqing, China

    Chuandong Li

  4. Department of Electronic Engineering, City University of Hong Kong, 83 Tat Chee Avenue, Kowloon, Hong Kong, China

    Chi Sing Leung

Rights and permissions

Copyright information

© 2012 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Li, W. (2012). Clustering with Uncertainties: An Affinity Propagation-Based Approach. In: Huang, T., Zeng, Z., Li, C., Leung, C.S. (eds) Neural Information Processing. ICONIP 2012. Lecture Notes in Computer Science, vol 7667. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-34500-5_52

Download citation

Publish with us

Access this chapter

Subscribe and save

Springer+ Basic
¥17,985 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
JPY 3498
Price includes VAT (Japan)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
JPY 5719
Price includes VAT (Japan)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
JPY 7149
Price includes VAT (Japan)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide -see info

Tax calculation will be finalised at checkout

Purchases are for personal use only


[8]ページ先頭

©2009-2025 Movatter.jp