Movatterモバイル変換


[0]ホーム

URL:


Skip to main content

Advertisement

Springer Nature Link
Log in

Recording and Playback of Camera Shake: Benchmarking Blind Deconvolution with a Real-World Database

  • Conference paper

Part of the book series:Lecture Notes in Computer Science ((LNIP,volume 7578))

Included in the following conference series:

  • 8830Accesses

Abstract

Motion blur due to camera shake is one of the predominant sources of degradation in handheld photography. Single image blind deconvolution (BD) or motion deblurring aims at restoring a sharp latent image from the blurred recorded picture without knowing the camera motion that took place during the exposure. BD is a long-standing problem, but has attracted much attention recently, cumulating in several algorithms able to restore photos degraded by real camera motion in high quality. In this paper, we present abenchmark dataset for motion deblurring that allows quantitative performance evaluation and comparison of recent approaches featuring non-uniform blur models. To this end, werecord and analyse real camera motion, which is played back on a robot platform such that we can record a sequence of sharp images sampling the six dimensional camera motion trajectory. The goal of deblurring is to recover one of these sharp images, and our dataset contains all information to assess how closely various algorithms approximate that goal. In a comprehensive comparison, we evaluate state-of-the-art single image BD algorithms incorporating uniform and non-uniform blur models.

Similar content being viewed by others

Keywords

References

  1. Levin, A., Weiss, Y., Durand, F., Freeman, W.T.: Understanding and evaluating blind deconvolution algorithms. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, CVPR (2009)

    Google Scholar 

  2. Whyte, O., Sivic, J., Zisserman, A., Ponce, J.: Non-uniform deblurring for shaken images. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, CVPR (2010)

    Google Scholar 

  3. Gupta, A., Joshi, N., Lawrence Zitnick, C., Cohen, M., Curless, B.: Single Image Deblurring Using Motion Density Functions. In: Daniilidis, K., Maragos, P., Paragios, N. (eds.) ECCV 2010, Part I. LNCS, vol. 6311, pp. 171–184. Springer, Heidelberg (2010)

    Chapter  Google Scholar 

  4. Richardson, W.H.: Bayesian-based iterative method of image restoration. Journal of the Optical Society of America 62, 55–59 (1972)

    Article  Google Scholar 

  5. Lucy, L.B.: An iterative technique for the rectification of observed distributions. The Astronomical Journal 79, 745–754 (1974)

    Article  Google Scholar 

  6. Kundur, D., Hatzinakos, D.: Blind image deconvolution. Signal Processing Magazine 13, 43–64 (1996)

    Article  Google Scholar 

  7. Fergus, R., Singh, B., Hertzmann, A., Roweis, S.T., Freeman, W.T.: Removing camera shake from a single photograph. ACM Transactions on Graphics, SIGGRAPH (2006)

    Google Scholar 

  8. Miskin, J., MacKay, D.J.C.: Ensemble learning for blind image separation and deconvolution. In: Advances Independent Component Analysis (2000)

    Google Scholar 

  9. Field, D.J.: What is the goal of sensory coding? Neural Computation 6, 559–601 (1994)

    Article  Google Scholar 

  10. Shan, Q., Jia, J., Agarwala, A.: High-quality motion deblurring from a single image. ACM Transactions on Graphics, SIGGRAPH (2008)

    Google Scholar 

  11. Cho, S., Lee, S.: Fast motion deblurring. ACM Transactions on Graphics, SIGGRAPH ASIA (2009)

    Google Scholar 

  12. Xu, L., Jia, J.: Two-Phase Kernel Estimation for Robust Motion Deblurring. In: Daniilidis, K., Maragos, P., Paragios, N. (eds.) ECCV 2010, Part I. LNCS, vol. 6311, pp. 157–170. Springer, Heidelberg (2010)

    Chapter  Google Scholar 

  13. Krishnan, D., Tay, T., Fergus, R.: Blind deconvolution using a normalized sparsity measure. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, CVPR (2011)

    Google Scholar 

  14. Levin, A., Weiss, Y., Durand, F., Freeman, W.T.: Efficient marginal likelihood optimization in blind deconvolution. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, CVPR (2011)

    Google Scholar 

  15. Tai, Y.W., Tan, P., Brown, M.S.: Richardson-lucy deblurring for scenes under a projective motion path. Technical Report of Korea Advanced Institue of Science and Technology, KAIST (2009)

    Google Scholar 

  16. Tai, Y.W., Tan, P., Brown, M.S.: Richardson-lucy deblurring for scenes under a projective motion path. IEEE Transactions on Pattern Analysis and Machine Intelligence, PAMI (2011)

    Google Scholar 

  17. Harmeling, S., Hirsch, M., Schölkopf, B.: Space-variant single-image blind deconvolution for removing camera shake. In: Advances in Neural Information Processing Systems, NIPS (2010)

    Google Scholar 

  18. Hirsch, M., Schuler, C.J., Harmeling, S., Schölkopf, B.: Fast removal of non-uniform camera-shake. In: Proceedings of the IEEE International Conference on Computer Vision, ICCV (2011)

    Google Scholar 

  19. Whyte, O., Sivic, J., Zisserman, A.: Deblurring shaken and partially saturated images. In: Proceedings of the IEEE Workshop on Color and Photometry in Computer Vision, with ICCV 2011 (2011)

    Google Scholar 

  20. Yuan, L., Sun, J., Quan, L., Shum, H.Y.: Image deblurring with blurred/noisy image pairs. ACM Transactions on Graphics, SIGGRAPH (2008)

    Google Scholar 

  21. Raskar, R., Agrawal, A., Tumblin, J.: Coded exposure photography: motion deblurring using fluttered shutter. ACM Transactions on Graphics, SIGGRAPH (2006)

    Google Scholar 

  22. Cho, T.S., Levin, A., Durand, F., Freeman, W.T.: Motion blur removal with orthogonal parabolic exposures. In: IEEE International Conference in Computational Photography, ICCP (2010)

    Google Scholar 

  23. Joshi, N., Kang, S.B., Zitnick, C.L., Szeliski, R.: Image deblurring using inertial measurement sensors. ACM Transactions on Graphics, SIGGRAPH (2010)

    Google Scholar 

  24. Guizar-Sicairos, M., Thurman, S.T., Fienup, J.R.: Efficient subpixel image registration algorithms. Optical Letters 33, 156–158 (2008)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

  1. Max Planck Institute for Intelligent Systems, Tübingen, Germany

    Rolf Köhler, Michael Hirsch, Betty Mohler, Bernhard Schölkopf & Stefan Harmeling

Authors
  1. Rolf Köhler

    You can also search for this author inPubMed Google Scholar

  2. Michael Hirsch

    You can also search for this author inPubMed Google Scholar

  3. Betty Mohler

    You can also search for this author inPubMed Google Scholar

  4. Bernhard Schölkopf

    You can also search for this author inPubMed Google Scholar

  5. Stefan Harmeling

    You can also search for this author inPubMed Google Scholar

Editor information

Editors and Affiliations

  1. Microsoft Research Ltd., CB3 0FB, Cambridge, UK

    Andrew Fitzgibbon

  2. Dept. of Computer Science, University of North Carolina, 27599, Chapel Hill, NC, USA

    Svetlana Lazebnik

  3. California Institute of Technology, 91125, Pasadena, CA, USA

    Pietro Perona

  4. Institute of Industrial Science, The University of Tokyo, 153-8505, Tokyo, Japan

    Yoichi Sato

  5. INRIA, 38330, Montbonnot, France

    Cordelia Schmid

Rights and permissions

Copyright information

© 2012 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Köhler, R., Hirsch, M., Mohler, B., Schölkopf, B., Harmeling, S. (2012). Recording and Playback of Camera Shake: Benchmarking Blind Deconvolution with a Real-World Database. In: Fitzgibbon, A., Lazebnik, S., Perona, P., Sato, Y., Schmid, C. (eds) Computer Vision – ECCV 2012. ECCV 2012. Lecture Notes in Computer Science, vol 7578. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-33786-4_3

Download citation

Publish with us


[8]ページ先頭

©2009-2025 Movatter.jp