Movatterモバイル変換


[0]ホーム

URL:


Skip to main content

Advertisement

Springer Nature Link
Log in

Inferring Geographic Coincidence in Ephemeral Social Networks

  • Conference paper

Abstract

We study users’ behavioral patterns in ephemeral social networks, which are temporarily built based on events such as conferences. From the data distribution and social theory perspectives, we found several interesting patterns. For example, the duration of two random persons staying at the same place and at the same time obeys a two-stage power-law distribution. We develop a framework to infer the likelihood of two users to meet together, and we apply the framework to two mobile social networks: UbiComp and Reality. The former is formed by researchers attending UbiComp 2011 and the latter is a network of students published by MIT. On both networks, we validate the proposed predictive framework, which significantly improve the accuracy for predicting geographic coincidence by comparing with two baseline methods.

The work is supported by Nokia Research Center and is also in part supported by the Natural Science Foundation of China (No. 61073073 , No. 60973102 , No. 61170061 ), Chinese National Key Foundation Research (No. 60933013, No.61035004), a special fund for Fast Sharing of Science Paper in Net Era by CSTD, and National Basic Research Program of China (No. 2011CB302302).

Similar content being viewed by others

Keywords

These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

References

  1. Atzmueller, M., Doerfel, S., Hotho, A., Mitzlaff, F., Stumme, G.: Face-to-face contacts during a conference: Communities, roles, and key players. In: Workshop MUSE at ECML/PKDD (2011)

    Google Scholar 

  2. Booth, A.: Personal influence networks and participation in professional association activities. The Public Opinion Quarterly 33(4), 611–614 (1969)

    Article  Google Scholar 

  3. Burt, R.S.: Structural holes: The social structure of competition. Harvard University Press, Cambridge (1992)

    Google Scholar 

  4. Cattuto, C., Van den Broeck, W., Barrat, A., Colizza, V., Pinton, J.-F., Vespignani, A.: Dynamics of person-to-person interactions from distributed rfid sensor networks. PLoS ONE 5(7), e11596 (2010)

    Google Scholar 

  5. Chin, A., Xu, B., Yin, F., Wang, X., Wang, W., Fan, X., Hong, D., Wang, Y.: Using proximity and homophily to connect conference attendees in a mobile social network. Accepted to the 2nd International Workshop on Sensing, Networking and Computing with Smartphones, pp. 1–9. IEEE Computer Society (2012)

    Google Scholar 

  6. Cho, E., Myers, S.A., Leskovec, J.: Friendship and mobility: user movement in location-based social networks. In: KDD, pp. 1082–1090 (2011)

    Google Scholar 

  7. Crandall, D., Backstrom, L., Cosley, D., Suri, S., Huttenlocher, D., Kleinberg, J.: Inferring social ties from geographic coincidences. PNAS 107(52), 22436 (2010)

    Article  Google Scholar 

  8. Eagle, N., Pentland, A.: Social serendipity: Mobilizing social software. IEEE Pervasive Computing 4(2), 28–34 (2005)

    Article  Google Scholar 

  9. Eagle, N., Pentland, A., Lazer, D.: Inferring friendship network structure by using mobile phone data. PNAS 106(36), 15274 (2009)

    Article  Google Scholar 

  10. Easley, D.A., Kleinberg, J.M.: Networks, Crowds, and Markets - Reasoning About a Highly Connected World. Cambridge University Press (2010)

    Google Scholar 

  11. Hall, E.T.: A system for the notation of proxemic behaviour. American Anthropologist 65, 1003–1026 (1963)

    Article  Google Scholar 

  12. Hammersley, J.M., Clifford, P.: Markov field on finite graphs and lattices (1971) (unpublished manuscript)

    Google Scholar 

  13. Isella, L., Barrat, J.S.A., Cattuto, C., Pinton, J.-F., den Broeck, W.V.: What’s in a crowd? analysis of face-to-face behavioural networks. Journal of Theoretical Biology, 166–180 (2010)

    Google Scholar 

  14. Katz, E.: The two-step flow of communication: An up-to-date report on an hypothesis. The Public Opinion Quarterly 21(1), 61–78 (1957)

    Article  Google Scholar 

  15. Lafferty, J.D., McCallum, A., Pereira, F.C.N.: Conditional random fields: Probabilistic models for segmenting and labeling sequence data. In: ICML, pp. 282–289 (2001)

    Google Scholar 

  16. Lazarsfeld, P.F., Berelson, B., Gaudet, H.: The People’s Choice. How the Voter Makes up his Mind in Presidential Campaign. Columbia University Press, New York (1944)

    Google Scholar 

  17. Li, Q., Zheng, Y., Xie, X., Chen, Y., Liu, W., Ma, W.: Mining user similarity based on location history. In: Workshop on Advances in Geographic Information Systems (2008)

    Google Scholar 

  18. Liu, S., Liu, Y., Ni, L.M., Fan, J., Li, M.: Towards mobility-based clustering. In: KDD, pp. 919–928 (2010)

    Google Scholar 

  19. Ni, L.M., Liu, Y., Lau, Y.C., Patil, A.P.: Landmarc: indoor location sensing using active rfid. Wireless Networks 10, 701–710 (2004)

    Article  Google Scholar 

  20. Qian, F., He, Q., He, J.: Mining Spatial Co-location Patterns with Dynamic Neighborhood Constraint. In: Buntine, W., Grobelnik, M., Mladenić, D., Shawe-Taylor, J. (eds.) ECML PKDD 2009, Part II. LNCS, vol. 5782, pp. 238–253. Springer, Heidelberg (2009)

    Chapter  Google Scholar 

  21. Tan, C., Tang, J., Sun, J., Lin, Q., Wang, F.: Social action tracking via noise tolerant time-varying factor graphs. In: KDD, pp. 1049–1058 (2010)

    Google Scholar 

  22. Tang, J., Lou, T., Kleinberg, J.: Inferring social ties across heterogeneous networks. In: WSDM 2012, pp. 743–752 (2012)

    Google Scholar 

  23. Tang, J., Sun, J., Wang, C., Yang, Z.: Social influence analysis in large-scale networks. In: KDD, pp. 807–816 (2009)

    Google Scholar 

  24. Tang, J., Zhang, J., Yao, L., Li, J., Zhang, L., Su, Z.: Arnetminer: Extraction and mining of academic social networks. In: KDD, pp. 990–998 (2008)

    Google Scholar 

  25. Tang, W., Zhuang, H., Tang, J.: Learning to Infer Social Ties in Large Networks. In: Gunopulos, D., Hofmann, T., Malerba, D., Vazirgiannis, M. (eds.) ECML PKDD 2011, Part III. LNCS, vol. 6913, pp. 381–397. Springer, Heidelberg (2011)

    Chapter  Google Scholar 

  26. Zhang, Y., Tang, J., Sun, J., Chen, Y., Rao, J.: Moodcast: Emotion prediction via dynamic continuous factor graph model. In: ICDM, pp. 1193–1198 (2010)

    Google Scholar 

  27. Zheng, Y., Li, Q., Chen, Y., Xie, X., Ma, W.: Understanding mobility based on GPS data. In: Ubiquitous Computing/Handheld and Ubiquitous Computing, pp. 312–321 (2008)

    Google Scholar 

  28. Zhu, L., Chin, A., Zhang, K., Xu, W., Wang, H., Zhang, L.: Managing Workplace Resources in Office Environments through Ephemeral Social Networks. In: Yu, Z., Liscano, R., Chen, G., Zhang, D., Zhou, X. (eds.) UIC 2010. LNCS, vol. 6406, pp. 665–679. Springer, Heidelberg (2010)

    Chapter  Google Scholar 

Download references

Author information

Authors and Affiliations

  1. Department of Computer Science and Technology, Tsinghua University, China

    Honglei Zhuang, Sen Wu & Jie Tang

  2. Nokia Research Center, Beijing, China

    Alvin Chin, Wei Wang & Xia Wang

Authors
  1. Honglei Zhuang

    You can also search for this author inPubMed Google Scholar

  2. Alvin Chin

    You can also search for this author inPubMed Google Scholar

  3. Sen Wu

    You can also search for this author inPubMed Google Scholar

  4. Wei Wang

    You can also search for this author inPubMed Google Scholar

  5. Xia Wang

    You can also search for this author inPubMed Google Scholar

  6. Jie Tang

    You can also search for this author inPubMed Google Scholar

Editor information

Editors and Affiliations

  1. Intelligent Systems Laboratory, University of Bristol, Merchant Venturers Building, Woodland Road, BS8 1UB, Bristol, UK

    Peter A. Flach

  2. Intelligent Systems Laboratory, University of Bristol, Merchant Venturers Building, Woodland Road,, BS8 1UB, Bristol, UK

    Tijl De Bie  & Nello Cristianini  & 

Rights and permissions

Copyright information

© 2012 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Zhuang, H., Chin, A., Wu, S., Wang, W., Wang, X., Tang, J. (2012). Inferring Geographic Coincidence in Ephemeral Social Networks. In: Flach, P.A., De Bie, T., Cristianini, N. (eds) Machine Learning and Knowledge Discovery in Databases. ECML PKDD 2012. Lecture Notes in Computer Science(), vol 7524. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-33486-3_39

Download citation

Publish with us


[8]ページ先頭

©2009-2025 Movatter.jp