Movatterモバイル変換


[0]ホーム

URL:


Skip to main content

Advertisement

Springer Nature Link
Log in

A Hybrid Local Feature for Face Recognition

  • Conference paper

Part of the book series:Lecture Notes in Computer Science ((LNAI,volume 7458))

Included in the following conference series:

Abstract

Efficient face encoding is an important issue in the area of face recognition. Compared to holistic features, local features have received increasing attention due to their good robustness to pose and illumination changes. In this paper, based on the histogram-based interest points and the speeded up robust features, we propose a hybrid local face feature, which provides a proper balance between the computational speed and discriminative power. Experiments on three databases demonstrate the effectiveness of the proposed method as well as its robustness to the main challenges of face recognition and even in practical environment.

This is a preview of subscription content,log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
¥17,985 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
JPY 3498
Price includes VAT (Japan)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
JPY 5719
Price includes VAT (Japan)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
JPY 7149
Price includes VAT (Japan)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide -see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. Yan, S., Wang, H., Tang, X., Huang, T.: Exploring feature descritors for face recognition. In: Proc. ICASSP, pp. 629–632 (2007)

    Google Scholar 

  2. Liu, X., Chen, T., Thornton, S.M.: Eigenspace updating for non-stationary process and its application to face recognition. Pattern Recognition, 1945–1959 (2003)

    Google Scholar 

  3. Lu, J., Plataniotis, K.N., Venetsanopoulos, A.N.: Regularization studies on lda for face recognition. In: Proc. ICIP, pp. 63–66 (2004)

    Google Scholar 

  4. Lowe, D.G.: Distinctive image features from scale-invariant keypoints. IJCV, 91–110 (2004)

    Google Scholar 

  5. Ahonen, T., Hadid, A., Pietikainen, M.: Face description with local binary patterns: Application to face recognition. IEEE Trans. PAMI 28(12), 297–301 (2006)

    Article  Google Scholar 

  6. Bay, H., Ess, A., Tuytelaars, T., Gool, L.V.: Surf: Speeded up robust features. CVIU 110(3), 346–359 (2008)

    Google Scholar 

  7. van de Sande, K.E.A., Gevers, T., Snoek, C.G.M.: Evaluating color descriptors for object and scene recognition. IEEE Trans. PAMI 32(9), 1582–1596 (2009)

    Article  Google Scholar 

  8. Cai, J., Zha, Z., Zhao, Y., Wang, Z.: Evaluation of histogram based interest point detector in web image classification and search. In: Proc. ICME, pp. 613–618 (2010)

    Google Scholar 

  9. Mikolajczyk, K., Tuytelaars, T., Schmid, C., Zisserman, A., Matas, J., Schaffalitzky, F., Kadir, T., Gool, L.V.: A comparison of affine region detectors. IJCV 65(30), 43–72 (2005)

    Article  Google Scholar 

  10. Harris, C., Stephens, M.: A combined corner and edge detection. IEEE Trans. PAMI, 147–151 (1988)

    Google Scholar 

  11. Mikolajczyk, K., Schmid, C.: Scale and affine invariant interest point detectors. IJCV 60(1), 63–86 (2005)

    Article  Google Scholar 

  12. Kadir, T., Zisserman, A., Brady, M.: An Affine Invariant Salient Region Detector. In: Pajdla, T., Matas, J(G.) (eds.) ECCV 2004. LNCS, vol. 3021, pp. 228–241. Springer, Heidelberg (2004)

    Chapter  Google Scholar 

  13. Maver, J.: Self-similarity and points of interest. IEEE Trans. PAMI 32(7), 1211–1226 (2010)

    Article  Google Scholar 

  14. Mikolajczyk, K., Schmid, C.: A performance evaluation of local descriptors. IEEE Trans. PAMI 10(27), 1615–1630 (2005)

    Article  Google Scholar 

  15. Quelhas, P., Monay, F., Odobez, J.M., Gatica-Perez, D., Tuytelaars, T., Gool, L.V.: Modeling scenes with local descriptors and latent aspects. In: Proc. ICCV, pp. 883–890 (2005)

    Google Scholar 

  16. Dalal, N., Triggs, B.: Histograms of oriented gradients for human detection. In: Proc. CVPR, pp. 886–893 (2005)

    Google Scholar 

  17. Lee, W., Chen, H.: Histogram-based interest point detectors. In: Proc. CVPR, pp. 1590–1596 (2009)

    Google Scholar 

  18. Viola, P., Jones, M.: Robust real-time face detection. In: Proc. ICCV, pp. 590–595 (2001)

    Google Scholar 

  19. Comaniciu, D., Ramesh, V., Meer, P.: Real-time tracking of non-rigid objects using mean shift. In: Proc. CVPR, pp. 142–149 (2000)

    Google Scholar 

  20. Sanderson, C., Paliwal, K.K.: Polynomial features for robust face authentication. In: Proc. ICIP, pp. 997–1000 (2002)

    Google Scholar 

  21. Kovac, J., Peer, P., Solina, F.: Illumination independent color-based face detection. In: Proc. ISPA, pp. 510–515 (2003)

    Google Scholar 

  22. Li, S.Z., Jain, A.K.: Handbook of Face Recognition. Springer (2005)

    Google Scholar 

Download references

Author information

Authors and Affiliations

  1. Laboratory of Intelligent Recognition and Image Processing, Beijing Key Laboratory of Digital Media, Beihang University, Beijing, China

    Gaopeng Gou, Di Huang & Yunhong Wang

Authors
  1. Gaopeng Gou

    You can also search for this author inPubMed Google Scholar

  2. Di Huang

    You can also search for this author inPubMed Google Scholar

  3. Yunhong Wang

    You can also search for this author inPubMed Google Scholar

Editor information

Editors and Affiliations

  1. Faculty of Environment, Society and Design, Department of Applied Computing, Lincoln University, P.O. Box 84, 7647, Christchurch, New Zealand

    Patricia Anthony

  2. School of Information Science and Technology, University of Tokyo, 7-3-1, Hongo, 113-8656, Bunkyo-ku, Tokyo, Japan

    Mitsuru Ishizuka

  3. MIMOS Berhad, Knowledge Technology, Technology Park Malaysia,, 57000, Kuala Lumpur, Malaysia

    Dickson Lukose

Rights and permissions

Copyright information

© 2012 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Gou, G., Huang, D., Wang, Y. (2012). A Hybrid Local Feature for Face Recognition. In: Anthony, P., Ishizuka, M., Lukose, D. (eds) PRICAI 2012: Trends in Artificial Intelligence. PRICAI 2012. Lecture Notes in Computer Science(), vol 7458. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-32695-0_8

Download citation

Publish with us

Access this chapter

Subscribe and save

Springer+ Basic
¥17,985 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
JPY 3498
Price includes VAT (Japan)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
JPY 5719
Price includes VAT (Japan)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
JPY 7149
Price includes VAT (Japan)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide -see info

Tax calculation will be finalised at checkout

Purchases are for personal use only


[8]ページ先頭

©2009-2025 Movatter.jp