Part of the book series:Advances in Intelligent Systems and Computing ((AISC,volume 175))
2596Accesses
Abstract
In this paper we describe how evolutionary computation can be used to automatically design artificial neural networks (ANNs) and associative memories (AMs). In the case of ANNs, Particle Swarm Optimization (PSO), Differential Evolution (DE), and Artificial Bee Colony (ABC) algorithms are used, while Genetic Programming is adopted for AMs. The derived ANNs and AMs are tested with several examples of well-known databases.
This is a preview of subscription content,log in via an institution to check access.
Access this chapter
Subscribe and save
- Get 10 units per month
- Download Article/Chapter or eBook
- 1 Unit = 1 Article or 1 Chapter
- Cancel anytime
Buy Now
- Chapter
- JPY 3498
- Price includes VAT (Japan)
- eBook
- JPY 22879
- Price includes VAT (Japan)
- Softcover Book
- JPY 28599
- Price includes VAT (Japan)
Tax calculation will be finalised at checkout
Purchases are for personal use only
Preview
Unable to display preview. Download preview PDF.
Similar content being viewed by others
References
Anderson, J.A.: A simple neural network generating an interactive memory. Mathematical Biosciences 14, 197–220 (1972)
Garro, B.A., Sossa, H., Vázquez, R.A.: Design of Artificial Neural Networks using a Modified Particle Swarm Optimization Algorithm. In: International Joint Conference on Neural Networks (IJCNN 2009), Atlanta, GE, USA, June 14-19, pp. 938–945 (2009)
Garro, B.A., Sossa, H., Vázquez, R.A.: Design of Artificial Neural Networks Using Differential Evolution Algorithm. In: Wong, K.W., Mendis, B.S.U., Bouzerdoum, A. (eds.) ICONIP 2010, Part II. LNCS, vol. 6444, pp. 201–208. Springer, Heidelberg (2010)
Garro, B.A., Sossa, H., Vázquez, R.A.: Evolving Neural Networks: A Comparison between Differential Evolution and Particle Swarm Optimization. In: Tan, Y., Shi, Y., Chai, Y., Wang, G. (eds.) ICSI 2011, Part I. LNCS, vol. 6728, pp. 447–454. Springer, Heidelberg (2011)
Garro, B.A., Sossa, H., Vázquez, R.A.: Artificial Neural Network Synthesis by means of Artificial Bee Colony (ABC) Algorithm. In: CEC 2011, New Orleans, June 5-8 (2011)
Garro, B.A., Sossa, H., Vázquez, R.A.: Back-Propagation vs Particle Swarm Optimization Algorithm: which Algorithm is better to adjust the Synaptic Weights of a Feed-Forward ANN? International Journal of Artificial Intelligence 7(11), 208–218 (2011)
Gurney, K.: An Introduction to Neural Networks. Taylor and Francis Group (1997)
Karaboga, D., Basturk, B.: A powerful and efficient algorithm for numerical function optimization: Artificial Bee Colony (ABC) algorithm. Journal of Global Optimization 39(3), 459–471 (2007)
Kennedy, J., Eberhart, R.: Particle Swarm Optimization. In: Proceedings of IEEE International Conference on Neural Networks, vol. IV, pp. 1942–1948 (1995)
Kohonen, T.: Correlation matrix memories. IEEE Transactions on Computers C-21(4), 353–359 (1972)
Koza, J.R.: Genetic Programming: A Paradigm for Genetically Breeding Populations of Computer Programs to Solve Problems, Stanford University Computer Science Department technical report (1990)
Koza, J.R.: Genetic Programming: On the Programming of Computers by Means of Natural Selection. MIT Press (1992)
Koza, J.R.: Genetic Programming II: Automatic Discovery of Reusable Programs. MIT Press (1994)
Koza, J.R., Bennett, F.H., Andre, D., Keane, M.A.: Genetic Programming III: Darwinian Invention and Problem Solving. Morgan Kaufmann (1999)
McCulloch, W., Pitts, W.: A logical calculus of the ideas immanent in nervous activity. Bulletin of Mathematical Biophysics 7, 115–133 (1943)
Murphy, P.M., Aha, D.W.: UCI Repository of machine learning databases. University of California, Department of Information and Computer Science, Irvine, CA, US., Technical Report (1994)
Ritter, G., Dìaz, J.: Morphological associative memories. IEEE Transactions on Neural Networks 9(2), 281–293 (1998)
Rosenblatt, F.: The Perceptron-a perceiving and recognizing automaton. Report 85-460-1, Cornell Aeronautical Laboratory (1957)
Rojas, R.: Neural networks - A systematic introduction. Chapter 7: The back propagation algorithm (1996)
Steinbuch, K.: Die Lernmatrix. Kybernetik 1(1), 36–45 (1961)
Storn, R., Price, K.: Differential evolution - a simple and efficient heuristic for global optimization over continuous spaces. Journal of Global Optimization 11, 341–359 (1997)
Vazquez, R.A.: Izhikevich Neuron Model and its Application in Pattern Recognition. Australian Journal of Intelligent Information Processing Systems 11(1), 53–60 (2010)
Vázquez, R.A.: Pattern Recognition Using Spiking Neurons and Firing Rates. In: Kuri-Morales, A., Simari, G.R. (eds.) IBERAMIA 2010. LNCS, vol. 6433, pp. 423–432. Springer, Heidelberg (2010)
Vazquez, R.A.: A computational approach for modelling the biological olfactory system during an odour discrimination task using spiking neuron. BMC Neuroscience 12(supp.1), 360 (2011)
Vázquez, R.A., Garro, B.A.: Training Spiking Neurons by Means of Particle Swarm Optimization. In: Tan, Y., Shi, Y., Chai, Y., Wang, G. (eds.) ICSI 2011, Part I. LNCS, vol. 6728, pp. 242–249. Springer, Heidelberg (2011)
Villegas, J., Sossa, H., Avilés, C., Olague, G.: Automatic Synthesis of Associative Memories by genetic Programming, a First Approach. Research in Computing Science 42, 91–102 (2009)
Villegas, J., Sossa, H., Avilés, C., Olague, G.: Automatic Synthesis of Associative Memories through Genetic Programming: a co-evolutionary approach. Revista Mexicana de Fsica 57(2), 110–116 (2011)
Yao, X.: A review of evolutionary artificial neural networks. Int. J. Intell. Syst. 8(4), 539–567 (1993)
Yao, X.: Evolutionary artificial neural networks. In: Kent, A., Williams, J.G. (eds.) Encyclopedia of Computer Science and Technology, vol. 33, pp. 137–170. Marcel Dekker, New York (1995)
Author information
Authors and Affiliations
CIC-IPN, Juan de Dios Batiz S/N, Col. Nva. Industrial Vallejo, Mexico City, Mexico
Humberto Sossa & Beatriz A. Garro
UAM-Azcapotzalco, Av. San Pablo Xalpa 180. Azcapotzalco, Mexico City, Mexico
Juan Villegas & Carlos Avilés
CICESE, Carretera Ensenada-Tijuana, 3918Zona Playitas, Ensenada, B. C., Mexico
Gustavo Olague
- Humberto Sossa
You can also search for this author inPubMed Google Scholar
- Beatriz A. Garro
You can also search for this author inPubMed Google Scholar
- Juan Villegas
You can also search for this author inPubMed Google Scholar
- Gustavo Olague
You can also search for this author inPubMed Google Scholar
- Carlos Avilés
You can also search for this author inPubMed Google Scholar
Corresponding author
Correspondence toHumberto Sossa.
Editor information
Editors and Affiliations
, Computer Science Department, CINVESTAV-IPN, Col. San Pedro Zacatenco 2508, Mexico City, 07360, Mexico
Oliver Schütze
, Computer Science Department, CINVESTAV-IPN, Col. San Pedro Zacatenco 2508, Mexico City, 07360, Mexico
Carlos A. Coello Coello
, Computer Science and Communications, University of Luxembourg, rue Richard Coudenhove-Kalergi 6, Luxembourg, 1359, Luxembourg
Alexandru-Adrian Tantar
Computer Science and Communications, Research Unit, University of Luxembourg, rue Richard Coudenhove-Kalergi 6, Luxembourg, L-1359, Luxembourg
Emilia Tantar
Computer Science, and Communications, University of Luxembourg, rue Richard Coudenhove-Kalergi 6, Luxembourg, L-1359, Luxembourg
Pascal Bouvry
Bordeaux Mathematical Institute, INRIA Bordeaux-Sud Ouest, Université Bordeaux I, cours de la Libération 351, Talence Cedex, 33405, France
Pierre Del Moral
Bâtiment Leyteire, UFR Sciences et Modélisation, Université Bordeaux II, 3ter place de la Victoire, Bordeaux, 33000, France
Pierrick Legrand
Rights and permissions
Copyright information
© 2013 Springer-Verlag Berlin Heidelberg
About this paper
Cite this paper
Sossa, H., Garro, B.A., Villegas, J., Olague, G., Avilés, C. (2013). Evolutionary Computation Applied to the Automatic Design of Artificial Neural Networks and Associative Memories. In: Schütze, O.,et al. EVOLVE - A Bridge between Probability, Set Oriented Numerics, and Evolutionary Computation II. Advances in Intelligent Systems and Computing, vol 175. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-31519-0_18
Download citation
Publisher Name:Springer, Berlin, Heidelberg
Print ISBN:978-3-642-31518-3
Online ISBN:978-3-642-31519-0
eBook Packages:EngineeringEngineering (R0)
Share this paper
Anyone you share the following link with will be able to read this content:
Sorry, a shareable link is not currently available for this article.
Provided by the Springer Nature SharedIt content-sharing initiative