Part of the book series:Lecture Notes in Computer Science ((LNIP,volume 7325))
Included in the following conference series:
2188Accesses
Abstract
This paper presents a deformable contour based method for blood vessel segmentation in digital retinal images. The method was evaluated on the publicly available DRIVE database, widely used for this purpose, since it contains retinal images where the vascular structure has been precisely marked by experts. Method performance is comparable to other existing solutions in literature, but it reaches the result faster than the others. Its effectiveness and velocity make this blood vessel segmentation technique suitable for retinal image computer analysis such as automated screening for early diabetic retinopathy detection.
This is a preview of subscription content,log in via an institution to check access.
Access this chapter
Subscribe and save
- Get 10 units per month
- Download Article/Chapter or eBook
- 1 Unit = 1 Article or 1 Chapter
- Cancel anytime
Buy Now
- Chapter
- JPY 3498
- Price includes VAT (Japan)
- eBook
- JPY 5719
- Price includes VAT (Japan)
- Softcover Book
- JPY 7149
- Price includes VAT (Japan)
Tax calculation will be finalised at checkout
Purchases are for personal use only
Preview
Unable to display preview. Download preview PDF.
Similar content being viewed by others
References
Mendonça, A.M., Campilho, A.: Segmentation or retinal blood vessels by combining detection of centerlines and morphological reconstruction. IEEE Trans. Med. Imag. 25(9), 1200–1213 (2006)
Taylor, H.R., Keeffe, J.E.: World blindness: a 21st century perspective. Br. J. Ophthalmol. 85, 261–266 (2001)
Klein, R., Meuer, S.M., Moss, S.E., Klein, B.E.: Retinal microaneurysm counts and 10-year progression of diabetic retinopathy. Arch. Ophthalmol. 113, 1386–1391 (1995)
Fong, D.S., Aiello, L., Gardner, T.W., King, G.L., Blankenship, G., Cavallerano, J.D., Ferris, F.L., Klein, R.: Diabetic retinopathy. Diabetes Care 26, 226–229 (2003)
Marín, D., Aquino, A., Gegúndez-Arias, M.E., Bravo, J.M.: A new supervised method for blood vessel segmentation in retinal images by using gray-level and moment invariants-based features. IEEE Trans. Med. Imag. 30(1), 146–158 (2011)
Chaudhuri, S., Chatterjee, S., Katz, N., Nelson, M., Goldbaum, M.: Detection of blood vessels in retinal images using two-dimensional matched filters. IEEE Trans. Med. Imag. 8(3), 263–269 (1989)
Jiang, X., Mojon, D.: Adaptive local thresholding by verification-based multithreshold probing with application to vessel detection in retinal images. IEEE Trans. Pattern Anal. Mach. Intell. 25(1), 131–137 (2003)
Espona, L., Carreira, M.J., Ortega, M., Penedo, M.G.: A Snake for Retinal Vessel Segmentation. In: Martí, J., Benedí, J.M., Mendonça, A.M., Serrat, J. (eds.) IbPRIA 2007. LNCS, vol. 4478, pp. 178–185. Springer, Heidelberg (2007)
Martinez-Perez, M.E., Hughes, A.D., Thom, S.A., Bharath, A.A., Parker, K.H.: Segmentation of blood vessels from red-free and fluorescein retinal images. Med. Imag. Anal. 11, 47–61 (2007)
Niemeijer, M., Staal, J.J., van Ginneken, B., Loog, M., Abramoff, M.D.: Comparative study of retinal vessel segmentation methods on a new publicly available database. In: Proc. SPIE Med. Imag: Image Process., vol. 5370, pp. 648–656 (2004)
Soares, J.V.B., Leandro, J.J.G., Cesar Jr., R.M., Jelinek, H.F., Cree, M.J.: Retinal vessel segmentation using the 2D Gabor wavelet and supervised classification. IEEE Trans. Med. Imag. 25(9), 1214–1222 (2006)
Staal, J., Abramoff, M.D., Niemeijer, M., Viergever, M.A., van Ginneken, B.: Ridge based vessel segmentation in color images of the retina. IEEE Trans. Med. Imag. 23(4), 501–509 (2004)
Caderno, I.G., Penedo, M.G., Mariño, C., Carreira, M.J., Gomez-Ulla, F., González, F.: Automatic Extraction of the Retina AV Index. In: Campilho, A.C., Kamel, M.S. (eds.) ICIAR 2004. LNCS, vol. 3212, pp. 132–140. Springer, Heidelberg (2004)
Ortega, M., Mariño, C., Penedo, M.G., Blanco, M., González, F.: Personal authentication based on feature extraction and optic nerve location in digital retinal images. WSEAS Trans. on Computers 5(6), 1169–1176 (2006)
Condurache, A.P., Aach, T.: Vessel segmentation in angiograms using hysteresis thresholding. In: IAPR Conference on Machine Vision Applications, pp. 269–272 (2005)
Kass, M., Witkin, A., Terzopoulos, D.: Active contour models. Int. J. Computer Vision 1(2), 321–331 (1988)
Blanco, M., Penedo, M.G., Barreira, N., Penas, M., Carreira, M.J.: Localization and Extraction of the Optic Disc Using the Fuzzy Circular Hough Transform. In: Rutkowski, L., Tadeusiewicz, R., Zadeh, L.A., Żurada, J.M. (eds.) ICAISC 2006. LNCS (LNAI), vol. 4029, pp. 712–721. Springer, Heidelberg (2006)
Author information
Authors and Affiliations
Centro de Investigación en Tecnoloxías da Información (CITIUS), Universidade de Santiago de Compostela, Spain
María J. Carreira
Departamento de Electrónica e Computación, Universidade de Santiago de Compostela, Spain
Antonio Mosquera
Institute of Molecular Systems Biology, ETH Zürich, Switzerland
Lucia Espona
VARPA Group, Departamento de Computación, Universidade da Coruña, Spain
Manuel G. Penedo
- María J. Carreira
You can also search for this author inPubMed Google Scholar
- Lucia Espona
You can also search for this author inPubMed Google Scholar
- Manuel G. Penedo
You can also search for this author inPubMed Google Scholar
- Antonio Mosquera
You can also search for this author inPubMed Google Scholar
Editor information
Editors and Affiliations
Faculty of Engineering, Institute of Biomedical Engineering, University of Porto, Rua Dr. Roberto Frias, 4200-465, Porto, Portugal
Aurélio Campilho
Department of Electrical and Computer Engineering, University of Waterloo, N2L 3G1, Waterloo, ON, Canada
Mohamed Kamel
Rights and permissions
Copyright information
© 2012 Springer-Verlag Berlin Heidelberg
About this paper
Cite this paper
Carreira, M.J., Espona, L., Penedo, M.G., Mosquera, A. (2012). Fast Segmentation of Retinal Blood Vessels Using a Deformable Contour Model. In: Campilho, A., Kamel, M. (eds) Image Analysis and Recognition. ICIAR 2012. Lecture Notes in Computer Science, vol 7325. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-31298-4_42
Download citation
Publisher Name:Springer, Berlin, Heidelberg
Print ISBN:978-3-642-31297-7
Online ISBN:978-3-642-31298-4
eBook Packages:Computer ScienceComputer Science (R0)
Share this paper
Anyone you share the following link with will be able to read this content:
Sorry, a shareable link is not currently available for this article.
Provided by the Springer Nature SharedIt content-sharing initiative