Part of the book series:Lecture Notes in Computer Science ((LNTCS,volume 7214))
Included in the following conference series:
1935Accesses
Abstract
We will demonstrate the impact of the integration of our most recently developed learning technology for inferring Register Automata into the LearnLib, our framework for active automata learning. This will not only illustrate the unique power of Register Automata, which allows one to faithfully model data independent systems, but also the ease of enhancing the LearnLib with new functionality.
This work is supported by the European FP 7 project CONNECT (IST 231167).
Chapter PDF
Similar content being viewed by others
Keywords
- Intrusion Detection System
- Automaton Learning
- Modeling Paradigm
- Mealy Machine
- Network Intrusion Detection System
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.
References
Aarts, F., Schmaltz, J., Vaandrager, F.: Inference and Abstraction of the Biometric Passport. In: Margaria, T., Steffen, B. (eds.) ISoLA 2010, Part I. LNCS, vol. 6415, pp. 673–686. Springer, Heidelberg (2010)
Angluin, D.: Learning Regular Sets from Queries and Counterexamples. Information and Computation 75(2), 87–106 (1987)
Bossert, G., Hiet, G., Henin, T.: Modelling to Simulate Botnet Command and Control Protocols for the Evaluation of Network Intrusion Detection Systems. In: 2011 Conference on Network and Information Systems Security (SAR-SSI), pp. 1–8 (May 2011)
Cassel, S., Howar, F., Jonsson, B., Merten, M., Steffen, B.: A Succinct Canonical Register Automaton Model. In: Bultan, T., Hsiung, P.-A. (eds.) ATVA 2011. LNCS, vol. 6996, pp. 366–380. Springer, Heidelberg (2011)
Howar, F., Steffen, B., Cassel, S., Jonsson, B.: Inferring Canonical Register Automata. In: Kuncak, V., Rybalchenko, A. (eds.) VMCAI 2012. LNCS, vol. 7148, pp. 251–266. Springer, Heidelberg (2012)
Issarny, V., Steffen, B., Jonsson, B., Blair, G.S., Grace, P., Kwiatkowska, M.Z., Calinescu, R., Inverardi, P., Tivoli, M., Bertolino, A., Sabetta, A.: CONNECT Challenges: Towards Emergent Connectors for Eternal Networked Systems. In: ICECCS, pp. 154–161 (2009)
Lazić, R., Nowak, D.: A Unifying Approach to Data-Independence. In: Palamidessi, C. (ed.) CONCUR 2000. LNCS, vol. 1877, pp. 581–595. Springer, Heidelberg (2000)
Merten, M., Steffen, B., Howar, F., Margaria, T.: Next Generation LearnLib. In: Abdulla, P.A., Leino, K.R.M. (eds.) TACAS 2011. LNCS, vol. 6605, pp. 220–223. Springer, Heidelberg (2011)
Author information
Authors and Affiliations
Chair for Programming Systems, Technical University Dortmund, Dortmund, D-44227, Germany
Maik Merten, Falk Howar & Bernhard Steffen
Dept. of Information Technology, Uppsala University, Sweden
Sofia Cassel & Bengt Jonsson
- Maik Merten
You can also search for this author inPubMed Google Scholar
- Falk Howar
You can also search for this author inPubMed Google Scholar
- Bernhard Steffen
You can also search for this author inPubMed Google Scholar
- Sofia Cassel
You can also search for this author inPubMed Google Scholar
- Bengt Jonsson
You can also search for this author inPubMed Google Scholar
Editor information
Editors and Affiliations
University of California at Santa Cruz, 1156 High Street, 95064, Santa Cruz, CA, USA
Cormac Flanagan
Fakultät für Ingenieurwesen, Abteilung für Informatik und Angewandte Kognitionswissenschaft, Universität Duisburg-Essen, Lotharstraße 65, 47057, Duisburg, Germany
Barbara König
Rights and permissions
Copyright information
© 2012 Springer-Verlag Berlin Heidelberg
About this paper
Cite this paper
Merten, M., Howar, F., Steffen, B., Cassel, S., Jonsson, B. (2012). Demonstrating Learning of Register Automata. In: Flanagan, C., König, B. (eds) Tools and Algorithms for the Construction and Analysis of Systems. TACAS 2012. Lecture Notes in Computer Science, vol 7214. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-28756-5_32
Download citation
Publisher Name:Springer, Berlin, Heidelberg
Print ISBN:978-3-642-28755-8
Online ISBN:978-3-642-28756-5
eBook Packages:Computer ScienceComputer Science (R0)
Share this paper
Anyone you share the following link with will be able to read this content:
Sorry, a shareable link is not currently available for this article.
Provided by the Springer Nature SharedIt content-sharing initiative