Movatterモバイル変換


[0]ホーム

URL:


Skip to main content

Advertisement

Springer Nature Link
Log in

New Results on Minimum Error Entropy Decision Trees

  • Conference paper

Part of the book series:Lecture Notes in Computer Science ((LNIP,volume 7042))

Included in the following conference series:

  • 2705Accesses

Abstract

We present new results on the performance of Minimum Error Entropy (MEE) decision trees, which use a novel node split criterion. The results were obtained in a comparive study with popular alternative algorithms, on 42 real world datasets. Carefull validation and statistical methods were used. The evidence gathered from this body of results show that the error performance of MEE trees compares well with alternative algorithms. An important aspect to emphasize is that MEE trees generalize better on average without sacrifing error performance.

Similar content being viewed by others

Keywords

References

  1. Rokach, L., Maimon, O.: Decision Trees. In: Maimon, O., Rokach, L. (eds.) Data Mining and Knowledge Discovery Handbook. Springer, Heidelberg (2005)

    Google Scholar 

  2. Marques de Sá, J.P., Sebastião, R., Gama, J.: Tree Classifiers Based on Minimum Error Entropy Decisions. Can. J. Artif. Intell., Patt. Rec. and Mach. Learning (in Press, 2011)

    Google Scholar 

  3. Silva, L., Felgueiras, C.S., Alexandre, L., Marques de Sá, J.: Error Entropy in Classification Problems: A Univariate Data Analysis. Neural Computation 18, 2036–2061 (2006)

    Article MathSciNet MATH  Google Scholar 

  4. Asuncion, A., Newman, D.J.: UCI Machine Learning Repository. University of California, School of Information and Computer Science, Irvine, CA (2010),http://www.ics.uci.edu/~mlearn/MLRepository.html

  5. Kearns, M.: A Bound on the Error of Cross Validation Using the Approximation and Estimation Rates, with Consequences for the Training-Test Split. Neural Computation 9, 1143–1161 (1997)

    Article  Google Scholar 

  6. Molinaro, A.M., Simon, R., Pfeiffer, R.M.: Prediction Error Estimation: A Comparison of Resampling Methods. Bioinformatics 21, 3301–3307 (2005)

    Article  Google Scholar 

  7. Demšar, J.: Statistical Comparisons of Classifiers over Multiple Data Sets. J. of Machine Learning Research 7, 1–30 (2006)

    MathSciNet MATH  Google Scholar 

  8. García, S., Fernández, A., Luengo, J., Herrera, F.: Advanced Nonparametric Tests for Multiple Comparisons in the Design of Experiments in Computational Intelligence and Data Mining: Experimental Analysis of Power. Information Sciences 180, 2044–2064 (2010)

    Article  Google Scholar 

  9. Hochberg, Y., Tamhane, A.C.: Multiple Comparison Procedures. John Wiley & Sons, Inc. (1987)

    Google Scholar 

  10. Salzberg, S.L.: On Comparing Classifiers: Pitfalls to Avoid and a Recommended Approach. Data Mining and Knowledge Discovery 1, 317–328 (1997)

    Article  Google Scholar 

  11. Jensen, D., Oates, T., Cohen, P.R.: Building Simple Models: A Case Study with Decision Trees. In: Liu, X., Cohen, P., Berthold, M. (eds.) IDA 1997. LNCS, vol. 1280, pp. 211–222. Springer, Heidelberg (1997)

    Chapter  Google Scholar 

  12. Li, R.-H., Belford, G.G.: Instability of Decision Tree Classification Algorithms. In: Proc. 8th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, pp. 570–575 (2002)

    Google Scholar 

Download references

Author information

Authors and Affiliations

  1. INEB-Instituto de Engenharia Biomédica, FEUP, Universidade do Porto, Rua Dr. Roberto Frias, s/n, 4200-465, Porto, Portugal

    J. P. Marques de Sá & Tânia Fontes

  2. LIAAD - INESC Porto, L.A., Rua de Ceuta, 118, 6, 4050-190, Porto, Portugal

    Raquel Sebastião & João Gama

Authors
  1. J. P. Marques de Sá

    You can also search for this author inPubMed Google Scholar

  2. Raquel Sebastião

    You can also search for this author inPubMed Google Scholar

  3. João Gama

    You can also search for this author inPubMed Google Scholar

  4. Tânia Fontes

    You can also search for this author inPubMed Google Scholar

Editor information

Editors and Affiliations

  1. Universidad de La Frontera, Avda. Francisco Salazar, 01145, Temuco, Chile

    César San Martin

  2. Myongji University, San 38-2, Namdong, 449-728, Cheoingu, Yongin, Republic of Korea

    Sang-Woon Kim

Rights and permissions

Copyright information

© 2011 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

de Sá, J.P.M., Sebastião, R., Gama, J., Fontes, T. (2011). New Results on Minimum Error Entropy Decision Trees. In: San Martin, C., Kim, SW. (eds) Progress in Pattern Recognition, Image Analysis, Computer Vision, and Applications. CIARP 2011. Lecture Notes in Computer Science, vol 7042. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-25085-9_42

Download citation

Publish with us

Societies and partnerships


[8]ページ先頭

©2009-2025 Movatter.jp