Movatterモバイル変換


[0]ホーム

URL:


Skip to main content

Advertisement

Springer Nature Link
Log in

Synchronous Rendezvous for Location-Aware Agents

  • Conference paper

Part of the book series:Lecture Notes in Computer Science ((LNTCS,volume 6950))

Included in the following conference series:

Abstract

We study rendezvous of two anonymous agents, where each agent knows its own initial position in the environment. Their task is to meet each other as quickly as possible. The time of the rendezvous is measured by the number of synchronous rounds that agents need to use in the worst case in order to meet. In each round, an agent may make a simple move or it may stay motionless. We consider two types of environments, finite or infinite graphs and Euclidean spaces. A simple move traverses a single edge (in a graph) or at most a unit distance (in Euclidean space). The rendezvous consists in visiting by both agents the same point of the environment simultaneously (in the same round).

In this paper, we propose several asymptotically optimal rendezvous algorithms. In particular, we show that in the line and trees as well as in multi-dimensional Euclidean spaces and grids the agents can rendezvous in time\(\mathcal{O}(d)\), whered is the distance between the initial positions of the agents.

The problem of location-aware rendezvous was studied before in the asynchronous model for Euclidean spaces and multi-dimensional grids, where the emphasis was on the length of the adopted rendezvous trajectory. We point out that, contrary to the asynchronous case, where the cost of rendezvous is dominated by the size of potentially large neighborhoods, the agents are able to meet in all graphs of at mostn nodes in time almost linear ind, namely,\(\mathcal{O}(d \log^2 n)\). We also determine an infinite family of graphs in which synchronized rendezvous takes time Ω(d).

This is a preview of subscription content,log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
¥17,985 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
JPY 3498
Price includes VAT (Japan)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
JPY 5719
Price includes VAT (Japan)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
JPY 7149
Price includes VAT (Japan)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide -see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. Alpern, S.: The rendezvous search problem. SIAM Journal on Control and Optimization 33, 673–683 (1995)

    Article MathSciNet MATH  Google Scholar 

  2. Alpern, J., Baston, V., Essegaier, S.: Rendezvous search on a graph. Journal of Applied Probability 36, 223–231 (1999)

    Article MathSciNet MATH  Google Scholar 

  3. Alpern, S.: Rendezvous Search: A Personal Perspective. Operations Research 50(5), 772–795 (2002)

    Article MathSciNet MATH  Google Scholar 

  4. Alpern, S., Gal, S.: The Theory of Search Games and Rendezvous. Kluwer Academic Publishers, Dordrecht (2003)

    MATH  Google Scholar 

  5. Anderson, E., Fekete, S.: Asymmetric rendezvous on the plane. In: Proc. 14th Annual ACM Symposium on Computational Geometry, pp. 365–373 (1998)

    Google Scholar 

  6. Anderson, E., Fekete, S.: Two-dimensional rendezvous search. Operations Research 49, 107–118 (2001)

    Article MathSciNet MATH  Google Scholar 

  7. Ando, H., Oasa, Y., Suzuki, I., Yamashita, M.: Distributed memoryless point convergence algorithm for mobile robots with limited visibility. IEEE Transactions on Robotics and Automation 15(5), 818–828 (1999)

    Article  Google Scholar 

  8. Bampas, E., Czyzowicz, J., Gąsieniec, L., Ilcinkas, D., Labourel, A.: Almost Optimal Asynchronous Rendezvous in Infinite Multidimensional Grids. In: Lynch, N.A., Shvartsman, A.A. (eds.) DISC 2010. LNCS, vol. 6343, pp. 297–311. Springer, Heidelberg (2010)

    Chapter  Google Scholar 

  9. Baston, V., Gal, S.: Rendezvous on the line when the player’s initial distance is given by an unknown probability distribution. SIAM J. on Control and Optimization 36, 1880–1889 (1998)

    Article MathSciNet MATH  Google Scholar 

  10. Baston, V., Gal, S.: Rendezvous search when marks are left at the starting points. Naval Research Logistics 48, 722–731 (2001)

    Article MathSciNet MATH  Google Scholar 

  11. Bollobas, B.: Extremal Graph Theory. Academic Press, London (1978)

    MATH  Google Scholar 

  12. Cohen, R., Peleg, D.: Convergence Properties of the Gravitational Algorithm in Asynchronous Robot Systems. SIAM Journal on Computing 34(6), 1516–1528 (2005)

    Article MathSciNet MATH  Google Scholar 

  13. Collins, A., Czyzowicz, J., Gąsieniec, L., Labourel, A.: Tell me where I am so I can meet you sooner (Asynchronous rendezvous with location information). In: Abramsky, S., Gavoille, C., Kirchner, C., Meyer auf der Heide, F., Spirakis, P.G. (eds.) ICALP 2010. LNCS, vol. 6199, pp. 502–514. Springer, Heidelberg (2010)

    Chapter  Google Scholar 

  14. Czyzowicz, J., Kosowski, A., Pelc, A.: How to meet when you forget: Log-space rendezvous in arbitrary graphs. In: Proc. 29th Annual ACM SIGACT-SIGOPS Symposium on Principles of Distributed Computing (PODC 2010), pp. 450–459 (2010)

    Google Scholar 

  15. Czyzowicz, J., Labourel, A., Pelc, A.: How to Meet Asynchronously (Almost) Everywhere. In: Proc. 21st ACM-SIAM Symposium on Discrete Algorithms (SODA 2010), pp. 22–30 (2010)

    Google Scholar 

  16. De Marco, G., Gargano, L., Kranakis, E., Krizanc, D., Pelc, A., Vaccaro, U.: Asynchronous deterministic rendezvous in graphs. Theoretical Computer Science 355, 315–326 (2006)

    Article MathSciNet MATH  Google Scholar 

  17. Dessmark, A., Fraigniaud, P., Kowalski, D., Pelc, A.: Deterministic rendezvous in graphs. Algorithmica 46, 69–96 (2006)

    Article MathSciNet MATH  Google Scholar 

  18. Dragano, F., Yano, C., Lomonosov, I.: Collective tree spanners of graphs. SIAM Journal on Discrete Mathematics 20, 240–260 (2006)

    Article MathSciNet  Google Scholar 

  19. Emek, Y., Gąsieniec, L., Kantor, E., Pelc, A., Peleg, D., Su, C.: Broadcasting in UDG radio networks with unknown topology. Distributed Computing 21(5), 331–351 (2009)

    Article MATH  Google Scholar 

  20. Emek, Y., Kantor, E., Peleg, D.: On the effect of the deployment setting on broadcasting in Euclidean radio networks. In: Proc. 27th Annual ACM SIGACT-SIGOPS Symposium on Principles of Distributed Computing (PODC 2008), pp. 223–232 (2008)

    Google Scholar 

  21. Gaber, I., Mansour, Y.: Broadcast in radio networks. In: Proc. 6th ACM Symposium on Discrete Algorithms (SODA 1995), pp. 577–585 (1995); Also in J. of Algorithms 46, 1–20 (2003)

    Google Scholar 

  22. Gal, S.: Rendezvous search on the line. Operations Research 47, 974–976 (1999)

    Article MATH  Google Scholar 

  23. Kowalski, D., Malinowski, A.: How to meet in anonymous network. Theoretical Computer Science 399, 141–156 (2008)

    Article MathSciNet MATH  Google Scholar 

  24. Kozma, G., Lotker, Z., Sharir, M., Stupp, G.: Geometrically aware communication in random wireless networks. In: Proc. 23rd Annual ACM SIGACT-SIGOPS Symposium on Principles of Distributed Computing (PODC 2004), pp. 310–319 (2004)

    Google Scholar 

  25. Kranakis, E., Krizanc, D., Markou, E.: The Mobile Agent Rendezvous Problem in the Ring. Lectures on Distributed Computing Theory. Morgan and Claypool Publishers (2010)

    Google Scholar 

  26. Kranakis, E., Krizanc, D., Rajsbaum, S.: Mobile agent rendezvous: A survey. In: Flocchini, P., Gąsieniec, L. (eds.) SIROCCO 2006. LNCS, vol. 4056, pp. 1–9. Springer, Heidelberg (2006)

    Chapter  Google Scholar 

  27. Olfati-Saber, R., Fax, J.A., Murray, R.M.: Consensus and Cooperation in Networked Multi-Agent Systems. Proc. of IEEE 95(1), 215–233 (2007)

    Article  Google Scholar 

  28. Souissi, S., Défago, X., Yamashita, M.: Using eventually consistent compasses to gather memory-less mobile robots with limited visibility. ACM Transactions on Autonomous and Adaptive Systems 4(1) (2009)

    Google Scholar 

  29. Suzuki, I., Yamashita, M.: Distributed Anonymous Mobile Robots: Formation of Geometric Patterns. SIAM Journal on Computing 28(4), 1347–1363 (1999)

    Article MathSciNet MATH  Google Scholar 

  30. Ta-Shma, A., Zwick, U.: Deterministic rendezvous, treasure hunts and strongly universal exploration sequences. In: Proc. 18th Annual ACM-SIAM Symposium on Discrete Algorithms (SODA 2007), pp. 599–608 (2007)

    Google Scholar 

Download references

Author information

Authors and Affiliations

  1. University of Liverpool, Liverpool, L69 3BX, UK

    Andrew Collins, Leszek Gąsieniec & Russell Martin

  2. Département d’informatique, Université du Québec en Outaouais, Gatineau, Québec, J8X 3X7, Canada

    Jurek Czyzowicz

  3. INRIA Bordeaux Sud-Ouest, LaBRI, 33405, Talence, France

    Adrian Kosowski

Authors
  1. Andrew Collins

    You can also search for this author inPubMed Google Scholar

  2. Jurek Czyzowicz

    You can also search for this author inPubMed Google Scholar

  3. Leszek Gąsieniec

    You can also search for this author inPubMed Google Scholar

  4. Adrian Kosowski

    You can also search for this author inPubMed Google Scholar

  5. Russell Martin

    You can also search for this author inPubMed Google Scholar

Editor information

Editors and Affiliations

  1. Department of Computer Science, Weizmann Institute of Science, Rehovot, Israel

    David Peleg

Rights and permissions

Copyright information

© 2011 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Collins, A., Czyzowicz, J., Gąsieniec, L., Kosowski, A., Martin, R. (2011). Synchronous Rendezvous for Location-Aware Agents. In: Peleg, D. (eds) Distributed Computing. DISC 2011. Lecture Notes in Computer Science, vol 6950. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-24100-0_42

Download citation

Publish with us

Access this chapter

Subscribe and save

Springer+ Basic
¥17,985 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
JPY 3498
Price includes VAT (Japan)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
JPY 5719
Price includes VAT (Japan)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
JPY 7149
Price includes VAT (Japan)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide -see info

Tax calculation will be finalised at checkout

Purchases are for personal use only


[8]ページ先頭

©2009-2025 Movatter.jp